These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 31356616)
41. A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Kalume DE; Okulate M; Zhong J; Reddy R; Suresh S; Deshpande N; Kumar N; Pandey A Proteomics; 2005 Sep; 5(14):3765-77. PubMed ID: 16127729 [TBL] [Abstract][Full Text] [Related]
42. Genetic diversity of Anopheles stephensi in Ethiopia provides insight into patterns of spread. Carter TE; Yared S; Getachew D; Spear J; Choi SH; Samake JN; Mumba P; Dengela D; Yohannes G; Chibsa S; Murphy M; Dissanayake G; Flately C; Lopez K; Janies D; Zohdy S; Irish SR; Balkew M Parasit Vectors; 2021 Dec; 14(1):602. PubMed ID: 34895319 [TBL] [Abstract][Full Text] [Related]
43. Mass spectrometry based proteomic analysis of salivary glands of urban malaria vector Anopheles stephensi. Vijay S; Rawat M; Sharma A Biomed Res Int; 2014; 2014():686319. PubMed ID: 25126571 [TBL] [Abstract][Full Text] [Related]
44. Exogenous gypsy insulator sequences modulate transgene expression in the malaria vector mosquito, Anopheles stephensi. Carballar-Lejarazú R; Jasinskiene N; James AA Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7176-81. PubMed ID: 23584017 [TBL] [Abstract][Full Text] [Related]
45. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi. Carballar-Lejarazú R; Brennock P; James AA Insect Mol Biol; 2016 Aug; 25(4):460-9. PubMed ID: 27110891 [TBL] [Abstract][Full Text] [Related]
46. Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence. Inbar E; Eappen AG; Alford RT; Reid W; Harrell RA; Hosseini M; Chakravarty S; Li T; Sim BKL; Billingsley PF; Hoffman SL PLoS Pathog; 2021 Nov; 17(11):e1009770. PubMed ID: 34784388 [TBL] [Abstract][Full Text] [Related]
47. Proteotranscriptomics assisted gene annotation and spatial proteomics of Bombyx mori BmN4 cell line. Levin M; Scheibe M; Butter F BMC Genomics; 2020 Oct; 21(1):690. PubMed ID: 33023468 [TBL] [Abstract][Full Text] [Related]
48. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan. Ahmed A; Khogali R; Elnour MB; Nakao R; Salim B Parasit Vectors; 2021 Oct; 14(1):511. PubMed ID: 34600584 [TBL] [Abstract][Full Text] [Related]
49. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity. Smith RC; King JG; Tao D; Zeleznik OA; Brando C; Thallinger GG; Dinglasan RR Mol Cell Proteomics; 2016 Nov; 15(11):3373-3387. PubMed ID: 27624304 [TBL] [Abstract][Full Text] [Related]
50. Anopheles stephensi Dual Oxidase Silencing Activates the Thioester-Containing Protein 1 Pathway to Suppress Plasmodium Development. Kakani P; Kajla M; Choudhury TP; Gupta L; Kumar S J Innate Immun; 2019; 11(6):496-505. PubMed ID: 30928970 [TBL] [Abstract][Full Text] [Related]
51. Gene expression modulation of ABC transporter genes in response to permethrin in adults of the mosquito malaria vector Anopheles stephensi. Mastrantonio V; Ferrari M; Epis S; Negri A; Scuccimarra G; Montagna M; Favia G; Porretta D; Urbanelli S; Bandi C Acta Trop; 2017 Jul; 171():37-43. PubMed ID: 28302529 [TBL] [Abstract][Full Text] [Related]
52. Differential susceptibilities of Anopheles albimanus and Anopheles stephensi mosquitoes to ivermectin. Dreyer SM; Morin KJ; Vaughan JA Malar J; 2018 Apr; 17(1):148. PubMed ID: 29615055 [TBL] [Abstract][Full Text] [Related]
53. Molecular Confirmation of Anopheles stephensi Mosquitoes in the Al Hudaydah Governorate, Yemen, 2021 and 2022. Assada M; Al-Hadi M; Esmail MA; Al-Jurban J; Alkawri A; Shamsan A; Terreri P; Samake JN; Aljasari A; Awash AA; Al Eryani SM; Carter TE Emerg Infect Dis; 2024 Jul; 30(7):1467-1471. PubMed ID: 38916721 [TBL] [Abstract][Full Text] [Related]
54. Molecular characterization of the carboxypeptidase B1 of Anopheles stephensi and its evaluation as a target for transmission-blocking vaccines. Raz A; Dinparast Djadid N; Zakeri S Infect Immun; 2013 Jun; 81(6):2206-16. PubMed ID: 23569111 [TBL] [Abstract][Full Text] [Related]
55. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A. arabiensis. Li Z; Zhou JJ; Shen Z; Field L Sci China C Life Sci; 2004 Dec; 47(6):567-76. PubMed ID: 15620114 [TBL] [Abstract][Full Text] [Related]
57. Identification and phylogenetic analysis of voltage-gated sodium channel haplotypes in the malaria vector Anopheles sinensis using a high-throughput amplicon sequencing approach. Ni R; Liu N; Li M; Qian W; Qiu X Parasit Vectors; 2021 Sep; 14(1):499. PubMed ID: 34565467 [TBL] [Abstract][Full Text] [Related]
59. HSP superfamily of genes in the malaria vector Anopheles sinensis: diversity, phylogenetics and association with pyrethroid resistance. Si FL; Qiao L; He QY; Zhou Y; Yan ZT; Chen B Malar J; 2019 Apr; 18(1):132. PubMed ID: 30975215 [TBL] [Abstract][Full Text] [Related]
60. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Orondo PW; Nyanjom SG; Atieli H; Githure J; Ondeto BM; Ochwedo KO; Omondi CJ; Kazura JW; Lee MC; Zhou G; Zhong D; Githeko AK; Yan G Parasit Vectors; 2021 Jun; 14(1):335. PubMed ID: 34174946 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]