These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 3135672)
1. The iron-binding and hydroxyl radical scavenging action of anti-inflammatory drugs. Aruoma OI; Halliwell B Xenobiotica; 1988 Apr; 18(4):459-70. PubMed ID: 3135672 [TBL] [Abstract][Full Text] [Related]
2. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604 [TBL] [Abstract][Full Text] [Related]
3. Differential inhibition of superoxide, hydroxyl and peroxyl radicals by nimesulide and its main metabolite 4-hydroxynimesulide. Maffei Facino R; Carini M; Aldini G; Saibene L; Morelli R Arzneimittelforschung; 1995 Oct; 45(10):1102-9. PubMed ID: 8595069 [TBL] [Abstract][Full Text] [Related]
4. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Gutteridge JM Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032 [TBL] [Abstract][Full Text] [Related]
5. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor--kappaB activation by phorbol 12-myristate 13-acetate. Ye J; Ding M; Zhang X; Rojanasakul Y; Shi X Ann Clin Lab Sci; 2000 Jan; 30(1):65-71. PubMed ID: 10678585 [TBL] [Abstract][Full Text] [Related]
6. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257 [TBL] [Abstract][Full Text] [Related]
7. Role of iron and influence of antiinflammatory drugs on oxygen-derived free radical production and reactivity. Cleland LG; Betts WH; Vernon-Roberts B; Bielicki J J Rheumatol; 1982; 9(6):885-92. PubMed ID: 7161780 [TBL] [Abstract][Full Text] [Related]
8. Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury. Shi H; Zhao B; Xin W Biochem Mol Biol Int; 1995 Apr; 35(5):981-94. PubMed ID: 7549941 [TBL] [Abstract][Full Text] [Related]
9. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers. Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477 [TBL] [Abstract][Full Text] [Related]
10. In vitro comparative assessment of the scavenging activity against three reactive oxygen species of non-steroidal anti-inflammatory drugs from the oxicam and sulfoanilide families. Van Antwerpen P; Nève J Eur J Pharmacol; 2004 Aug; 496(1-3):55-61. PubMed ID: 15288575 [TBL] [Abstract][Full Text] [Related]
11. Copper(II) interactions with non-steroidal anti-inflammatory agents. III--3-Methoxyanthranilic acid as a potential *OH-inactivating ligand: a quantitative investigation of its copper handling role in vivo. Halova-Lajoie B; Brumas V; Fiallo MM; Berthon G J Inorg Biochem; 2006 Mar; 100(3):362-73. PubMed ID: 16442626 [TBL] [Abstract][Full Text] [Related]
12. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction. Tadolini B; Cabrini L Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214 [TBL] [Abstract][Full Text] [Related]
13. Role of guanosine triphosphate in ferric ion-linked Fenton chemistry. Biaglow JE; Held KD; Manevich Y; Tuttle S; Kachur A; Uckun F Radiat Res; 1996 May; 145(5):554-62. PubMed ID: 8619020 [TBL] [Abstract][Full Text] [Related]
14. Diaryl-dithiolanes and -isothiazoles: COX-1/COX-2 and 5-LOX-inhibitory, *OH scavenging and anti-adhesive activities. Scholz M; Ulbrich HK; Soehnlein O; Lindbom L; Mattern A; Dannhardt G Bioorg Med Chem; 2009 Jan; 17(2):558-68. PubMed ID: 19097798 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant profile of nimesulide, indomethacin and diclofenac in phosphatidylcholine liposomes (PCL) as membrane model. Maffei Facino R; Carini M; Aldini G; Saibene L; Macciocchi A Int J Tissue React; 1993; 15(6):225-34. PubMed ID: 8088944 [TBL] [Abstract][Full Text] [Related]
16. [Effect of some nonsteroid antiinflammatory drugs on Fenton-reaction initiated degradation of 2-deoxy-D-ribose]. Rozmer Z; Perjési P Acta Pharm Hung; 2005; 75(2):69-75. PubMed ID: 16318231 [TBL] [Abstract][Full Text] [Related]
17. Cr(IV) causes activation of nuclear transcription factor-kappa B, DNA strand breaks and dG hydroxylation via free radical reactions. Shi X; Ding M; Ye J; Wang S; Leonard SS; Zang L; Castranova V; Vallyathan V; Chiu A; Dalal N; Liu K J Inorg Biochem; 1999 May; 75(1):37-44. PubMed ID: 10402675 [TBL] [Abstract][Full Text] [Related]
18. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Puppo A; Halliwell B Biochem J; 1988 Jan; 249(1):185-90. PubMed ID: 3342006 [TBL] [Abstract][Full Text] [Related]
19. Binding of iron(II) ions to the pentose sugar 2-deoxyribose. Aruoma OI; Chaudhary SS; Grootveld M; Halliwell B J Inorg Biochem; 1989 Feb; 35(2):149-55. PubMed ID: 2539434 [TBL] [Abstract][Full Text] [Related]
20. RP-HPLC study of the degradation of diclofenac and piroxicam in the presence of hydroxyl radicals. Gaudiano MC; Valvo L; Bertocchi P; Manna L J Pharm Biomed Anal; 2003 Apr; 32(1):151-8. PubMed ID: 12852457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]