These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31357014)

  • 1. Radionuclide transport in brackish water through chalk fractures.
    Tran EL; Teutsch N; Klein-BenDavid O; Kersting AB; Zavrin M; Weisbrod N
    Water Res; 2019 Oct; 163():114886. PubMed ID: 31357014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloid-facilitated transport of
    Tran E; Zavrin M; Kersting AB; Klein-BenDavid O; Teutsch N; Weisbrod N
    Sci Total Environ; 2021 Feb; 757():143818. PubMed ID: 33246722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.
    Tran E; Klein Ben-David O; Teutch N; Weisbrod N
    Water Res; 2016 Sep; 100():88-97. PubMed ID: 27183207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport.
    Tran EL; Teutsch N; Klein-BenDavid O; Weisbrod N
    Sci Total Environ; 2018 Dec; 643():260-269. PubMed ID: 29936167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobility of Radionuclides in Fractured Carbonate Rocks: Lessons from a Field-Scale Transport Experiment.
    Tran EL; Reimus P; Klein-BenDavid O; Teutsch N; Zavarin M; Kersting AB; Weisbrod N
    Environ Sci Technol; 2020 Sep; 54(18):11249-11257. PubMed ID: 32786561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock.
    Tran EL; Klein-BenDavid O; Teutsch N; Weisbrod N
    Environ Sci Technol; 2015 Nov; 49(22):13275-82. PubMed ID: 26461815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolved and colloidal transport of cesium in natural discrete fractures.
    Tang XY; Weisbrod N
    J Environ Qual; 2010; 39(3):1066-76. PubMed ID: 20400602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radionuclide transport in fractured chalk under abrupt changes in salinity.
    Turkeltaub T; Weisbrod N; Zavarin M; Chang E; Kersting AB; Teutsch N; Roded S; Tran EL; Geller Y; Gerera Y; Klein-BenDavid O
    Sci Total Environ; 2024 Feb; 912():168636. PubMed ID: 37981163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-desorption of
    Zhang L; Li L; Chen K; Zhang Q; Shao J; Cui Y; Zhu J; Zhang A; Yang S
    J Environ Radioact; 2024 May; 275():107430. PubMed ID: 38615506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.
    Dittrich TM; Boukhalfa H; Ware SD; Reimus PW
    J Environ Radioact; 2015 Oct; 148():170-82. PubMed ID: 26184579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory migration experiments with radionuclides and natural colloids in a granite fracture.
    Vilks P; Baik MH
    J Contam Hydrol; 2001 Feb; 47(2-4):197-210. PubMed ID: 11288576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.
    Missana T; Alonso U; Turrero MJ
    J Contam Hydrol; 2003 Mar; 61(1-4):17-31. PubMed ID: 12598091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the influence of bentonite colloids on strontium sorption in granite under various hydrogeochemical conditions.
    Cai F; Ma F; Zhang X; Reimus P; Qi L; Wang Y; Lu D; Thanh HV; Dai Z
    Sci Total Environ; 2023 Nov; 900():165819. PubMed ID: 37506897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive sorption of organic contaminants in chalk.
    Graber ER; Borisover M
    J Contam Hydrol; 2003 Dec; 67(1-4):159-75. PubMed ID: 14607475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous transport of colloids and solutes in a shear zone.
    Kosakowski G
    J Contam Hydrol; 2004 Aug; 72(1-4):23-46. PubMed ID: 15240165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging effects on Cesium-137 (
    Telfeyan K; Reimus PW; Boukhalfa H; Ware SD
    J Colloid Interface Sci; 2020 Apr; 566():316-326. PubMed ID: 32007742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of colloid formation in a granite groundwater bentonite porewater mixing zone on radionuclide speciation.
    Kunze P; Seher H; Hauser W; Panak PJ; Geckeis H; Fanghänel T; Schäfer T
    J Contam Hydrol; 2008 Dec; 102(3-4):263-72. PubMed ID: 18992961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of colloids in the transport of pesticides through Chalk.
    Gooddy DC; Mathias SA; Harrison I; Lapworth DJ; Kim AW
    Sci Total Environ; 2007 Oct; 385(1-3):262-71. PubMed ID: 17673277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dissolved organic matter on the co-transport of mineral colloids and sorptive contaminants.
    Cheng T; Saiers JE
    J Contam Hydrol; 2015; 177-178():148-57. PubMed ID: 25938867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms.
    Xu Z; Pan D; Tang Q; Wei X; Liu C; Li X; Chen X; Wu W
    Environ Pollut; 2022 Apr; 298():118842. PubMed ID: 35031401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.