These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31357179)

  • 1. Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Bhuiyan AG; Hashimoto A
    Nanotechnology; 2019 Nov; 30(44):445707. PubMed ID: 31357179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Hashimoto A
    Phys Chem Chem Phys; 2020 Jun; 22(24):13592-13602. PubMed ID: 32515451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal transport in monolayer zinc-sulfide: effects of length, temperature and vacancy defects.
    Islam ASMJ; Islam MS; Islam MR; Stampfl C; Park J
    Nanotechnology; 2021 Aug; 32(43):. PubMed ID: 34243178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral and flexural thermal transport in stanene/2D-SiC van der Waals heterostructure.
    Ahammed S; Islam MS; Mia I; Park J
    Nanotechnology; 2020 Dec; 31(50):505702. PubMed ID: 33006320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal transport in multilayer silicon carbide nanoribbons: reverse non-equilibrium molecular dynamics.
    Zanane FZ; Drissi LB; Saidi EH; Bousmina M; Fehri OF
    Phys Chem Chem Phys; 2024 Feb; 26(6):5414-5428. PubMed ID: 38275005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence.
    Wang H; Qin G; Li G; Wang Q; Hu M
    Phys Chem Chem Phys; 2017 May; 19(20):12882-12889. PubMed ID: 28474040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High thermal conductivity in wafer-scale cubic silicon carbide crystals.
    Cheng Z; Liang J; Kawamura K; Zhou H; Asamura H; Uratani H; Tiwari J; Graham S; Ohno Y; Nagai Y; Feng T; Shigekawa N; Cahill DG
    Nat Commun; 2022 Nov; 13(1):7201. PubMed ID: 36418359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region.
    Fang XY; Wang K; Hou ZL; Jin HB; Li YQ; Cao MS
    J Phys Condens Matter; 2012 Nov; 24(44):445802. PubMed ID: 23053061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceptional in-plane and interfacial thermal transport in graphene/2D-SiC van der Waals heterostructures.
    Islam MS; Mia I; Ahammed S; Stampfl C; Park J
    Sci Rep; 2020 Dec; 10(1):22050. PubMed ID: 33328491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature and interlayer coupling induced thermal transport across graphene/2D-SiC van der Waals heterostructure.
    Islam MS; Mia I; Islam ASMJ; Stampfl C; Park J
    Sci Rep; 2022 Jan; 12(1):761. PubMed ID: 35031659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductivity of 3C/4H-SiC Nanowires by Molecular Dynamics Simulation.
    Yin K; Shi L; Ma X; Zhong Y; Li M; He X
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous strain effect on the thermal conductivity of low-buckled two-dimensional silicene.
    Ding B; Li X; Zhou W; Zhang G; Gao H
    Natl Sci Rev; 2021 Sep; 8(9):nwaa220. PubMed ID: 34691724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Significant Thermal Conductivity Enhancement via an Ice-Templated and Sintered BN-SiC Skeleton.
    Yao Y; Ye Z; Huang F; Zeng X; Zhang T; Shang T; Han M; Zhang W; Ren L; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2892-2902. PubMed ID: 31860260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties.
    Fan Z; Wang Y; Gu X; Qian P; Su Y; Ala-Nissila T
    J Phys Condens Matter; 2020 Mar; 32(13):135901. PubMed ID: 31775129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Thermal Transport Properties of Graphene/SiC Heterostructures on Nuclear Reactor Cladding Material: A Molecular Dynamics Insight.
    Wu L; Sun X; Gong F; Luo J; Yin C; Sun Z; Xiao R
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low lattice thermal conductivity of monolayer penta-silicene and penta-germanene.
    Gao Z; Zhang Z; Liu G; Wang JS
    Phys Chem Chem Phys; 2019 Dec; 21(47):26033-26040. PubMed ID: 31746866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.