These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Hadjinicolaou AE; Leung RT; Garrett DJ; Ganesan K; Fox K; Nayagam DA; Shivdasani MN; Meffin H; Ibbotson MR; Prawer S; O'Brien BJ Biomaterials; 2012 Aug; 33(24):5812-20. PubMed ID: 22613134 [TBL] [Abstract][Full Text] [Related]
24. Three-dimensional electro-neural interfaces electroplated on subretinal prostheses. Butt E; Wang BY; Shin A; Chen ZC; Bhuckory M; Shah S; Galambos L; Kamins T; Palanker D; Mathieson K J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38364290 [No Abstract] [Full Text] [Related]
25. Fabrication of Subretinal 3D Microelectrodes with Hexagonal Arrangement. Seo HW; Kim N; Kim S Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32365472 [TBL] [Abstract][Full Text] [Related]
26. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263 [TBL] [Abstract][Full Text] [Related]
27. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development. Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384 [TBL] [Abstract][Full Text] [Related]
28. Electrical Stimulation of the Retina to Produce Artificial Vision. Weiland JD; Walston ST; Humayun MS Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361 [TBL] [Abstract][Full Text] [Related]
29. Optimization of stimulation parameters for epi-retinal implant based on biosafety consideration. Lu Y; Qin S; Zhao L; Yue L; Wu T; Qin B; Xu Z PLoS One; 2020; 15(7):e0236176. PubMed ID: 32697792 [TBL] [Abstract][Full Text] [Related]
30. Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation. Damle S; Carleton M; Kapogianis T; Arya S; Cavichini-Corderio M; Freeman WR; Lo YH; Oesch NW eNeuro; 2021; 8(6):. PubMed ID: 34799411 [TBL] [Abstract][Full Text] [Related]
31. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility. Bendali A; Rousseau L; Lissorgues G; Scorsone E; Djilas M; Dégardin J; Dubus E; Fouquet S; Benosman R; Bergonzo P; Sahel JA; Picaud S Biomaterials; 2015 Oct; 67():73-83. PubMed ID: 26210174 [TBL] [Abstract][Full Text] [Related]
32. Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array. Yang YT; Lin PK; Wan C; Yang WC; Lin LJ; Wu CY; Chiao CC Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9353-61. PubMed ID: 22058338 [TBL] [Abstract][Full Text] [Related]
33. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in middle-sized animals. Lohmann TK; Kanda H; Morimoto T; Endo T; Miyoshi T; Nishida K; Kamei M; Walter P; Fujikado T Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):661-73. PubMed ID: 26194404 [TBL] [Abstract][Full Text] [Related]
34. Development of a very large array for retinal stimulation. Waschkowski F; Brockmann C; Laube T; Mokwa W; Roessler G; Walter P Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2748-51. PubMed ID: 24110296 [TBL] [Abstract][Full Text] [Related]
35. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses. Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492 [TBL] [Abstract][Full Text] [Related]
36. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array]. Wang W; Qiao Q; Gao W; Wu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1255-9, 1271. PubMed ID: 25868240 [TBL] [Abstract][Full Text] [Related]
37. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode. Jensen RJ Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904 [TBL] [Abstract][Full Text] [Related]
38. Flexible microelectrode array for retinal prosthesis. Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066 [TBL] [Abstract][Full Text] [Related]
39. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study. Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093 [TBL] [Abstract][Full Text] [Related]
40. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]