These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
629 related articles for article (PubMed ID: 31357296)
21. Hairpin/DNA ring ternary probes for highly sensitive detection and selective discrimination of microRNA among family members. Liu X; Zou M; Li D; Yuan R; Xiang Y Anal Chim Acta; 2019 Oct; 1076():138-143. PubMed ID: 31203958 [TBL] [Abstract][Full Text] [Related]
22. A simple fluorescence biosensing strategy for ultrasensitive detection of the BCR-ABL1 fusion gene based on a DNA machine and multiple primer-like rolling circle amplification. Wu H; Zhou X; Cheng W; Yuan T; Zhao M; Duan X; Ding S Analyst; 2018 Oct; 143(20):4974-4980. PubMed ID: 30225494 [TBL] [Abstract][Full Text] [Related]
23. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Huang R; He L; Li S; Liu H; Jin L; Chen Z; Zhao Y; Li Z; Deng Y; He N Nanoscale; 2020 Jan; 12(4):2445-2451. PubMed ID: 31894795 [TBL] [Abstract][Full Text] [Related]
24. Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly. Liu M; Zhang W; Zhang Q; Brennan JD; Li Y Angew Chem Int Ed Engl; 2015 Aug; 54(33):9637-41. PubMed ID: 26119600 [TBL] [Abstract][Full Text] [Related]
25. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. Li X; Chen B; He M; Hu B Mikrochim Acta; 2019 May; 186(6):344. PubMed ID: 31076917 [TBL] [Abstract][Full Text] [Related]
26. A dual-cycling fluorescence scheme for ultrasensitive DNA detection through signal amplification and target regeneration. Iwe IA; Li Z; Huang J Analyst; 2019 Apr; 144(8):2649-2655. PubMed ID: 30843550 [TBL] [Abstract][Full Text] [Related]
27. Increasingly branched rolling circle amplification for the cancer gene detection. Li H; Xu J; Wang Z; Wu ZS; Jia L Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300 [TBL] [Abstract][Full Text] [Related]
28. Ultrasensitive amperometric aptasensor for the epithelial cell adhesion molecule by using target-driven toehold-mediated DNA recycling amplification. Chen Q; Hu W; Shang B; Wei J; Chen L; Guo X; Ran F; Chen W; Ding X; Xu Y; Wu Y Mikrochim Acta; 2018 Mar; 185(3):202. PubMed ID: 29594643 [TBL] [Abstract][Full Text] [Related]
29. Biomineralized Metal-Organic Framework Nanoparticles Enable Enzymatic Rolling Circle Amplification in Living Cells for Ultrasensitive MicroRNA Imaging. Zhang J; He M; Nie C; He M; Pan Q; Liu C; Hu Y; Yi J; Chen T; Chu X Anal Chem; 2019 Jul; 91(14):9049-9057. PubMed ID: 31274280 [TBL] [Abstract][Full Text] [Related]
30. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification. Xue Q; Wang Z; Wang L; Jiang W Bioconjug Chem; 2012 Apr; 23(4):734-9. PubMed ID: 22384977 [TBL] [Abstract][Full Text] [Related]
31. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
32. The Discovery of Rolling Circle Amplification and Rolling Circle Transcription. Mohsen MG; Kool ET Acc Chem Res; 2016 Nov; 49(11):2540-2550. PubMed ID: 27797171 [TBL] [Abstract][Full Text] [Related]
33. Ultrasensitive photoelectrochemical biosensor for MiRNA-21 assay based on target-catalyzed hairpin assembly coupled with distance-controllable multiple signal amplification. Zhu MH; Mu XM; Deng HM; Zhong X; Yuan R; Yuan YL Chem Commun (Camb); 2019 Aug; 55(65):9622-9625. PubMed ID: 31342017 [TBL] [Abstract][Full Text] [Related]
34. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay. Lee YJ; Jeong JY; Do JY; Hong CA Anal Bioanal Chem; 2023 Apr; 415(10):1991-1999. PubMed ID: 36853410 [TBL] [Abstract][Full Text] [Related]
35. Detection of p53 DNA using commercially available personal glucose meters based on rolling circle amplification coupled with nicking enzyme signal amplification. Jia Y; Sun F; Na N; Ouyang J Anal Chim Acta; 2019 Jul; 1060():64-70. PubMed ID: 30902332 [TBL] [Abstract][Full Text] [Related]
36. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Li X; Xu X; Song J; Xue Q; Li C; Jiang W Biosens Bioelectron; 2017 May; 91():631-636. PubMed ID: 28107744 [TBL] [Abstract][Full Text] [Related]
37. Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Nilsson M Histochem Cell Biol; 2006 Aug; 126(2):159-64. PubMed ID: 16807721 [TBL] [Abstract][Full Text] [Related]
38. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation. Liu H; Luo J; Fang L; Huang H; Deng J; Huang J; Zhang S; Li Y; Zheng J Biosens Bioelectron; 2018 Dec; 121():47-53. PubMed ID: 30196047 [TBL] [Abstract][Full Text] [Related]
39. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364 [TBL] [Abstract][Full Text] [Related]
40. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons. Peng Y; Li D; Yuan R; Xiang Y Biosens Bioelectron; 2018 May; 105():1-5. PubMed ID: 29331900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]