BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 31357361)

  • 1. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine.
    Zhang S; Wu D; Wu J; Xia Q; Jia X; Song X; Zeng L; Yuan Y
    Talanta; 2019 Nov; 204():747-752. PubMed ID: 31357361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel colorimetric and ratiometric fluorescent probe for cysteine based on conjugate addition-cyclization-elimination strategy with a large Stokes shift and bioimaging in living cells.
    Zhu D; Yan X; Ren A; Xie W; Duan Z
    Anal Chim Acta; 2019 Jun; 1058():136-145. PubMed ID: 30851847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift.
    Qi Y; Huang Y; Li B; Zeng F; Wu S
    Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel fluorescent probe with red emission and a large Stokes shift for selective imaging of endogenous cysteine in living cells.
    Chen D; Long Z; Dang Y; Chen L
    Analyst; 2018 Nov; 143(23):5779-5784. PubMed ID: 30345996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ICT-modulated NIR water-soluble fluorescent probe with large Stokes shift for selective detection of cysteine in living cells and zebrafish.
    Hou X; Li Z; Li Y; Zhou Q; Liu C; Fan D; Wang J; Xu R; Xu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119030. PubMed ID: 33049474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-signal mitochondria-targeted fluorescent probe for real-time visualization of cysteine metabolism in living cells and animals.
    Yang X; Liu W; Tang J; Li P; Weng H; Ye Y; Xian M; Tang B; Zhao Y
    Chem Commun (Camb); 2018 Oct; 54(81):11387-11390. PubMed ID: 30191239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells.
    Zhao C; Li X; Wang F
    Chem Asian J; 2014 Jul; 9(7):1777-81. PubMed ID: 24807291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission.
    Xu S; Zhou J; Dong X; Zhao W; Zhu Q
    Anal Chim Acta; 2019 Oct; 1074():123-130. PubMed ID: 31159932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ photoacoustic imaging of cysteine to reveal the mechanism of limited GSH synthesis in pulmonary fibrosis.
    Wang H; Zhang Y; Yang Y; He Z; Wu C; Zhang W; Zhang W; Liu J; Li P; Tang B
    Chem Commun (Camb); 2019 Aug; 55(65):9685-9688. PubMed ID: 31347620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells.
    Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H
    Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel intramolecular charge transfer-based near-infrared fluorescent probe with large Stokes shift for highly sensitive detection of cysteine in vivo.
    Ding X; Yang B; Liu Z; Shen M; Fan Z; Wang X; Yu W
    Anal Chim Acta; 2023 Nov; 1280():341873. PubMed ID: 37858558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel pyrene based fluorescent probe for selective detection of cysteine in presence of other bio-thiols in living cells.
    Rani BK; John SA
    Biosens Bioelectron; 2016 Sep; 83():237-42. PubMed ID: 27131996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells.
    Zhang J; Wang J; Liu J; Ning L; Zhu X; Yu B; Liu X; Yao X; Zhang H
    Anal Chem; 2015; 87(9):4856-63. PubMed ID: 25875053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel and simple imidazo[1,2-a]pyridin fluorescent probe for the sensitive and selective imaging of cysteine in living cells and zebrafish.
    Zhu M; Wang L; Wu X; Na R; Wang Y; Li QX; Hammock BD
    Anal Chim Acta; 2019 Jun; 1058():155-165. PubMed ID: 30851849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-Targeting Chromogenic and Fluorescence Turn-On Probe for the Selective Detection of Cysteine by Caged Oxazolidinoindocyanine.
    Kim CY; Kang HJ; Chung SJ; Kim HK; Na SY; Kim HJ
    Anal Chem; 2016 Jul; 88(14):7178-82. PubMed ID: 27367584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel xanthylene-based effective mitochondria-targeting ratiometric cysteine probe and its bioimaging in living cells.
    Yang XZ; Wei XR; Sun R; Xu YJ; Ge JF
    Talanta; 2020 Mar; 209():120580. PubMed ID: 31892055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells.
    Wang P; Wang Q; Huang J; Li N; Gu Y
    Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells.
    Zhou Y; Zhang L; Zhang X; Zhu ZJ
    J Mater Chem B; 2019 Feb; 7(5):809-814. PubMed ID: 32254855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.