These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 31357363)
1. An ultralow concentration of two-photon fluorescent probe for rapid and selective detection of lysosomal cysteine in living cells. Long Z; Chen L; Dang Y; Chen D; Lou X; Xia F Talanta; 2019 Nov; 204():762-768. PubMed ID: 31357363 [TBL] [Abstract][Full Text] [Related]
2. NIR two-photon fluorescent probe for biothiol detection and imaging of living cells in vivo. Xia X; Qian Y Analyst; 2018 Oct; 143(21):5218-5224. PubMed ID: 30270379 [TBL] [Abstract][Full Text] [Related]
3. A lysosome-targetable fluorescent probe for real-time imaging cysteine under oxidative stress in living cells. Wang XD; Fan L; Ge JY; Li F; Zhang CH; Wang JJ; Shuang SM; Dong C Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117175. PubMed ID: 31158770 [TBL] [Abstract][Full Text] [Related]
4. Coumarinocoumarin-Based Two-Photon Fluorescent Cysteine Biosensor for Targeting Lysosome. Chen C; Zhou L; Liu W; Liu W Anal Chem; 2018 May; 90(10):6138-6143. PubMed ID: 29687719 [TBL] [Abstract][Full Text] [Related]
5. Fluorescent probe for sensitive discrimination of Hcy and Cys/GSH in living cells via dual-emission. Xu S; Zhou J; Dong X; Zhao W; Zhu Q Anal Chim Acta; 2019 Oct; 1074():123-130. PubMed ID: 31159932 [TBL] [Abstract][Full Text] [Related]
6. A novel fluorescent probe with red emission and a large Stokes shift for selective imaging of endogenous cysteine in living cells. Chen D; Long Z; Dang Y; Chen L Analyst; 2018 Nov; 143(23):5779-5784. PubMed ID: 30345996 [TBL] [Abstract][Full Text] [Related]
7. A simple lysosome-targeted fluorescent probe based on flavonoid for detection of cysteine in living cells. Tan H; Zou Y; Guo J; Chen J; Zhou L Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121552. PubMed ID: 35759931 [TBL] [Abstract][Full Text] [Related]
8. A Triple-Emission Fluorescent Probe for Discriminatory Detection of Cysteine/Homocysteine, Glutathione/Hydrogen Sulfide, and Thiophenol in Living Cells. Yang L; Su Y; Geng Y; Zhang Y; Ren X; He L; Song X ACS Sens; 2018 Sep; 3(9):1863-1869. PubMed ID: 30132654 [TBL] [Abstract][Full Text] [Related]
9. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells. Fan L; Zhang W; Wang X; Dong W; Tong Y; Dong C; Shuang S Analyst; 2019 Jan; 144(2):439-447. PubMed ID: 30420979 [TBL] [Abstract][Full Text] [Related]
10. A novel one- and two-photon fluorescent probe induced by light for selective imaging of Cys in living cells and tissues. Ma Y; Zhao Y; Xia L; Huang J; Gu Y; Wang P Anal Chim Acta; 2018 Dec; 1035():161-167. PubMed ID: 30224135 [TBL] [Abstract][Full Text] [Related]
11. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine. Zhang S; Wu D; Wu J; Xia Q; Jia X; Song X; Zeng L; Yuan Y Talanta; 2019 Nov; 204():747-752. PubMed ID: 31357361 [TBL] [Abstract][Full Text] [Related]
12. A Lysosome-Targetable Fluorescent Probe for Simultaneously Sensing Cys/Hcy, GSH, and H Zhang H; Xu L; Chen W; Huang J; Huang C; Sheng J; Song X ACS Sens; 2018 Dec; 3(12):2513-2517. PubMed ID: 30465434 [TBL] [Abstract][Full Text] [Related]
13. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Wang P; Wang Q; Huang J; Li N; Gu Y Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity evaluation of NBD-SCN towards cysteine/homocysteine and its bioimaging applications. Chen YH; Tsai JC; Cheng TH; Yuan SS; Wang YM Biosens Bioelectron; 2014 Jun; 56():117-23. PubMed ID: 24480131 [TBL] [Abstract][Full Text] [Related]
15. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409 [TBL] [Abstract][Full Text] [Related]
16. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells. Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596 [TBL] [Abstract][Full Text] [Related]
17. A fluorescence turn-on probe for cysteine and homocysteine based on thiol-triggered benzothiazolidine ring formation. Liu SR; Chang CY; Wu SP Anal Chim Acta; 2014 Nov; 849():64-9. PubMed ID: 25300219 [TBL] [Abstract][Full Text] [Related]
18. A dual-channel fluorescent probe targeting lysosomes for differential detection of Cys/Hcy and GSH: Applications in food, pharmaceutical analysis and bioimaging. Liu Y; Fan L; Song J; Hou P; Wang H; Wang J; He C; Chen S Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():125011. PubMed ID: 39213831 [TBL] [Abstract][Full Text] [Related]
19. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. Cai S; Liu C; Jiao X; Zhao L; Zeng X J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785 [TBL] [Abstract][Full Text] [Related]
20. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative. Liang B; Wang B; Ma Q; Xie C; Li X; Wang S Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():67-74. PubMed ID: 29126010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]