These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31357419)
21. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach. Niu AQ; Xie LJ; Wang H; Zhu B; Wang SQ Drug Des Devel Ther; 2016; 10():2323-31. PubMed ID: 27486309 [TBL] [Abstract][Full Text] [Related]
22. WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Wu J; Zhang Q; Wu W; Pang T; Hu H; Chan WKB; Ke X; Zhang Y Bioinformatics; 2018 Jul; 34(13):2271-2282. PubMed ID: 29432522 [TBL] [Abstract][Full Text] [Related]
23. Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery. Ponzoni I; Sebastián-Pérez V; Requena-Triguero C; Roca C; Martínez MJ; Cravero F; Díaz MF; Páez JA; Arrayás RG; Adrio J; Campillo NE Sci Rep; 2017 May; 7(1):2403. PubMed ID: 28546583 [TBL] [Abstract][Full Text] [Related]
24. Active-learning strategies in computer-assisted drug discovery. Reker D; Schneider G Drug Discov Today; 2015 Apr; 20(4):458-65. PubMed ID: 25499665 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity. Playe B; Stoven V J Cheminform; 2020 Feb; 12(1):11. PubMed ID: 33431042 [TBL] [Abstract][Full Text] [Related]
26. Boosting compound-protein interaction prediction by deep learning. Tian K; Shao M; Wang Y; Guan J; Zhou S Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654 [TBL] [Abstract][Full Text] [Related]
27. Improved machine learning models for predicting selective compounds. Ning X; Walters M; Karypis G J Chem Inf Model; 2012 Jan; 52(1):38-50. PubMed ID: 22107358 [TBL] [Abstract][Full Text] [Related]
28. Fuzzy ARTMAP prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set. Andonie R; Fabry-Asztalos L; Abdul-Wahid CB; Abdul-Wahid S; Barker GI; Magill LC IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):80-93. PubMed ID: 21071799 [TBL] [Abstract][Full Text] [Related]
30. Predicting anatomic therapeutic chemical classification codes using tiered learning. Olson T; Singh R BMC Bioinformatics; 2017 Jun; 18(Suppl 8):266. PubMed ID: 28617230 [TBL] [Abstract][Full Text] [Related]
31. Drug-Target Interactions: Prediction Methods and Applications. Anusuya S; Kesherwani M; Priya KV; Vimala A; Shanmugam G; Velmurugan D; Gromiha MM Curr Protein Pept Sci; 2018; 19(6):537-561. PubMed ID: 27829350 [TBL] [Abstract][Full Text] [Related]
32. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization. Ezzat A; Zhao P; Wu M; Li XL; Kwoh CK IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):646-656. PubMed ID: 26890921 [TBL] [Abstract][Full Text] [Related]
33. Machine learning models for drug-target interactions: current knowledge and future directions. D'Souza S; Prema KV; Balaji S Drug Discov Today; 2020 Apr; 25(4):748-756. PubMed ID: 32171918 [TBL] [Abstract][Full Text] [Related]
34. Computational chemical biology on the rise. Brown JB; Bajorath J Future Med Chem; 2019 Jan; 11(1):1-3. PubMed ID: 30526065 [No Abstract] [Full Text] [Related]
35. MOST: most-similar ligand based approach to target prediction. Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX; BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192 [TBL] [Abstract][Full Text] [Related]
36. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction. Ashtawy HM; Mahapatra NR IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221 [TBL] [Abstract][Full Text] [Related]
37. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery. Li Z; Huang R; Xia M; Patterson TA; Hong H Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672 [TBL] [Abstract][Full Text] [Related]
39. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA. Ngo TD; Tran TD; Le MT; Thai KM SAR QSAR Environ Res; 2016 Sep; 27(9):747-80. PubMed ID: 27667641 [TBL] [Abstract][Full Text] [Related]
40. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Ngo TD; Tran TD; Le MT; Thai KM Mol Divers; 2016 Nov; 20(4):945-961. PubMed ID: 27431577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]