These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 31357458)

  • 1. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects.
    Zhang C; Xu B; Gong C; Luo J; Zhang Q; Gong Y
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabrication and applications of opto-microfluidic sensors.
    Zhang D; Men L; Chen Q
    Sensors (Basel); 2011; 11(5):5360-82. PubMed ID: 22163904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing.
    Zuo Y; Zhu X; Shi Y; Liang L; Yang Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.
    Gong Y; Zhang C; Liu QF; Wu Y; Wu H; Rao Y; Peng GD
    Opt Express; 2015 Feb; 23(3):3762-9. PubMed ID: 25836228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
    Zhao X; Zhao N; Shi Y; Xin H; Li B
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Tunable Lenses for Imaging and Light Manipulation.
    Chen L; Liang S; Chen Z; Liang X; Chen Q
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing optofluidic technology through the fusion of microfluidics and optics.
    Psaltis D; Quake SR; Yang C
    Nature; 2006 Jul; 442(7101):381-6. PubMed ID: 16871205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle Manipulation by Optical Forces in Microfluidic Devices.
    Paiè P; Zandrini T; Vázquez RM; Osellame R; Bragheri F
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to Photonics: Principles and the Most Recent Applications of Microstructures.
    Amiri IS; Azzuhri SRB; Jalil MA; Hairi HM; Ali J; Bunruangses M; Yupapin P
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic control using photothermal nanoparticles.
    Liu GL; Kim J; Lu Y; Lee LP
    Nat Mater; 2006 Jan; 5(1):27-32. PubMed ID: 16362056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools.
    Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.
    Nan F; Yan Z
    Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels.
    Zhang N; Li K; Cui Y; Wu Z; Shum PP; Auguste JL; Dinh XQ; Humbert G; Wei L
    Lab Chip; 2018 Feb; 18(4):655-661. PubMed ID: 29362756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Tapered Optical Fiber Sensor Structures: From Conventional to Novel and Emerging.
    Zhang W; Lang X; Liu X; Li G; Singh R; Zhang B; Kumar S
    Biosensors (Basel); 2023 Jun; 13(6):. PubMed ID: 37367009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic Tunable Lenses for In-Plane Light Manipulation.
    Chen Q; Li T; Li Z; Long J; Zhang X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.