These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. CRISPR/Cas9-Induced (CTG⋅CAG) van Agtmaal EL; André LM; Willemse M; Cumming SA; van Kessel IDG; van den Broek WJAA; Gourdon G; Furling D; Mouly V; Monckton DG; Wansink DG; Wieringa B Mol Ther; 2017 Jan; 25(1):24-43. PubMed ID: 28129118 [TBL] [Abstract][Full Text] [Related]
3. Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Marsh S; Hanson B; Wood MJA; Varela MA; Roberts TC Mol Ther; 2020 Dec; 28(12):2527-2539. PubMed ID: 33171139 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9. Wang Y; Hao L; Wang H; Santostefano K; Thapa A; Cleary J; Li H; Guo X; Terada N; Ashizawa T; Xia G Mol Ther; 2018 Nov; 26(11):2617-2630. PubMed ID: 30274788 [TBL] [Abstract][Full Text] [Related]
5. Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice. Lo Scrudato M; Poulard K; Sourd C; Tomé S; Klein AF; Corre G; Huguet A; Furling D; Gourdon G; Buj-Bello A Mol Ther; 2019 Aug; 27(8):1372-1388. PubMed ID: 31253581 [TBL] [Abstract][Full Text] [Related]
6. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Dastidar S; Ardui S; Singh K; Majumdar D; Nair N; Fu Y; Reyon D; Samara E; Gerli MFM; Klein AF; De Schrijver W; Tipanee J; Seneca S; Tulalamba W; Wang H; Chai YC; In't Veld P; Furling D; Tedesco FS; Vermeesch JR; Joung JK; Chuah MK; VandenDriessche T Nucleic Acids Res; 2018 Sep; 46(16):8275-8298. PubMed ID: 29947794 [TBL] [Abstract][Full Text] [Related]
7. Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) André LM; van Cruchten RTP; Willemse M; Bezstarosti K; Demmers JAA; van Agtmaal EL; Wansink DG; Wieringa B Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766224 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Dastidar S; Majumdar D; Tipanee J; Singh K; Klein AF; Furling D; Chuah MK; VandenDriessche T Mol Ther; 2022 Jan; 30(1):75-91. PubMed ID: 34371182 [TBL] [Abstract][Full Text] [Related]
9. Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat. Gudde AEEG; van Heeringen SJ; de Oude AI; van Kessel IDG; Estabrook J; Wang ET; Wieringa B; Wansink DG RNA Biol; 2017 Oct; 14(10):1374-1388. PubMed ID: 28102759 [TBL] [Abstract][Full Text] [Related]
10. Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Izzo M; Battistini J; Provenzano C; Martelli F; Cardinali B; Falcone G Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563013 [TBL] [Abstract][Full Text] [Related]
11. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. de Pontual L; Tomé S Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408837 [TBL] [Abstract][Full Text] [Related]
12. The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1. Batra R; Nelles DA; Roth DM; Krach F; Nutter CA; Tadokoro T; Thomas JD; Sznajder ŁJ; Blue SM; Gutierrez HL; Liu P; Aigner S; Platoshyn O; Miyanohara A; Marsala M; Swanson MS; Yeo GW Nat Biomed Eng; 2021 Feb; 5(2):157-168. PubMed ID: 32929188 [TBL] [Abstract][Full Text] [Related]