BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 31357694)

  • 1. The Role of Sodium Hydrogen Exchanger 1 in Dysregulation of Proton Dynamics and Reprogramming of Cancer Metabolism as a Sequela.
    Cardone RA; Alfarouk KO; Elliott RL; Alqahtani SS; Ahmed SBM; Aljarbou AN; Greco MR; Cannone S; Reshkin SJ
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer.
    Alfarouk KO; Ahmed SBM; Ahmed A; Elliott RL; Ibrahim ME; Ali HS; Wales CC; Nourwali I; Aljarbou AN; Bashir AHH; Alhoufie STS; Alqahtani SS; Cardone RA; Fais S; Harguindey S; Reshkin SJ
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-H+ exchanger, pH regulation and cancer.
    Reshkin SJ; Cardone RA; Harguindey S
    Recent Pat Anticancer Drug Discov; 2013 Jan; 8(1):85-99. PubMed ID: 22738122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethyl isopropyl amiloride decreases oxidative phosphorylation and increases mitochondrial fusion in clonal untransformed and cancer cells.
    Manoli SS; Kisor K; Webb BA; Barber DL
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C147-C157. PubMed ID: 34038242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH gradient reversal fuels cancer progression.
    Zheng T; Jäättelä M; Liu B
    Int J Biochem Cell Biol; 2020 Aug; 125():105796. PubMed ID: 32593663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic disruption of the pHi-regulating proteins Na+/H+ exchanger 1 (SLC9A1) and carbonic anhydrase 9 severely reduces growth of colon cancer cells.
    Parks SK; Cormerais Y; Durivault J; Pouyssegur J
    Oncotarget; 2017 Feb; 8(6):10225-10237. PubMed ID: 28055960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation.
    Reshkin SJ; Greco MR; Cardone RA
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1638):20130100. PubMed ID: 24493748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival.
    García-Bermúdez J; Cuezva JM
    Biochim Biophys Acta; 2016 Aug; 1857(8):1167-1182. PubMed ID: 26876430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives of Reprogramming Breast Cancer Metabolism.
    Wang YP; Lei QY
    Adv Exp Med Biol; 2017; 1026():217-232. PubMed ID: 29282686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH.
    Chiche J; Le Fur Y; Vilmen C; Frassineti F; Daniel L; Halestrap AP; Cozzone PJ; Pouysségur J; Lutz NW
    Int J Cancer; 2012 Apr; 130(7):1511-20. PubMed ID: 21484790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance.
    White KA; Grillo-Hill BK; Barber DL
    J Cell Sci; 2017 Feb; 130(4):663-669. PubMed ID: 28202602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Mitochondria in Cancer Induction, Progression and Changes in Metabolism.
    Rogalinska M
    Mini Rev Med Chem; 2016; 16(7):524-30. PubMed ID: 26471969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking metabolic reprogramming to therapy resistance in cancer.
    Morandi A; Indraccolo S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):1-6. PubMed ID: 28065746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer.
    Jin LH; Wei C
    Asian Pac J Cancer Prev; 2014; 15(17):7015-9. PubMed ID: 25227784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drivers of the Warburg phenotype.
    Cairns RA
    Cancer J; 2015; 21(2):56-61. PubMed ID: 25815844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins.
    Esparza-Moltó PB; Cuezva JM
    Antioxid Redox Signal; 2020 Nov; 33(13):927-945. PubMed ID: 31910046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.