These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 31357998)
1. On the interpretability of machine learning-based model for predicting hypertension. Elshawi R; Al-Mallah MH; Sakr S BMC Med Inform Decis Mak; 2019 Jul; 19(1):146. PubMed ID: 31357998 [TBL] [Abstract][Full Text] [Related]
2. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
3. Intelligible Models for HealthCare: Predicting the Probability of 6-Month Unfavorable Outcome in Patients with Ischemic Stroke. Feng X; Hua Y; Zou J; Jia S; Ji J; Xing Y; Zhou J; Liao J Neuroinformatics; 2022 Jul; 20(3):575-585. PubMed ID: 34435319 [TBL] [Abstract][Full Text] [Related]
4. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. Sakr S; Elshawi R; Ahmed A; Qureshi WT; Brawner C; Keteyian S; Blaha MJ; Al-Mallah MH PLoS One; 2018; 13(4):e0195344. PubMed ID: 29668729 [TBL] [Abstract][Full Text] [Related]
5. FIT calculator: a multi-risk prediction framework for medical outcomes using cardiorespiratory fitness data. Elshawi R; Sakr S; Al-Mallah MH; Keteyian SJ; Brawner CA; Ehrman JK Sci Rep; 2024 Apr; 14(1):8745. PubMed ID: 38627439 [TBL] [Abstract][Full Text] [Related]
6. Development of prediction models for one-year brain tumour survival using machine learning: a comparison of accuracy and interpretability. Charlton CE; Poon MTC; Brennan PM; Fleuriot JD Comput Methods Programs Biomed; 2023 May; 233():107482. PubMed ID: 36947980 [TBL] [Abstract][Full Text] [Related]
7. IHCP: interpretable hepatitis C prediction system based on black-box machine learning models. Fan Y; Lu X; Sun G BMC Bioinformatics; 2023 Sep; 24(1):333. PubMed ID: 37674125 [TBL] [Abstract][Full Text] [Related]
8. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Petch J; Di S; Nelson W Can J Cardiol; 2022 Feb; 38(2):204-213. PubMed ID: 34534619 [TBL] [Abstract][Full Text] [Related]
9. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project. Alghamdi M; Al-Mallah M; Keteyian S; Brawner C; Ehrman J; Sakr S PLoS One; 2017; 12(7):e0179805. PubMed ID: 28738059 [TBL] [Abstract][Full Text] [Related]
10. Opening the black box: interpretable machine learning for predictor finding of metabolic syndrome. Zhang Y; Zhang X; Razbek J; Li D; Xia W; Bao L; Mao H; Daken M; Cao M BMC Endocr Disord; 2022 Aug; 22(1):214. PubMed ID: 36028865 [TBL] [Abstract][Full Text] [Related]
11. A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare. Barda AJ; Horvat CM; Hochheiser H BMC Med Inform Decis Mak; 2020 Oct; 20(1):257. PubMed ID: 33032582 [TBL] [Abstract][Full Text] [Related]
12. Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification. Bifarin OO PLoS One; 2023; 18(5):e0284315. PubMed ID: 37141218 [TBL] [Abstract][Full Text] [Related]
13. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
14. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Nohara Y; Matsumoto K; Soejima H; Nakashima N Comput Methods Programs Biomed; 2022 Feb; 214():106584. PubMed ID: 34942412 [TBL] [Abstract][Full Text] [Related]
15. An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer. Alabi RO; Almangush A; Elmusrati M; Leivo I; Mäkitie AA Int J Med Inform; 2022 Dec; 168():104896. PubMed ID: 36279655 [TBL] [Abstract][Full Text] [Related]
17. Using Automated Machine Learning to Predict the Mortality of Patients With COVID-19: Prediction Model Development Study. Ikemura K; Bellin E; Yagi Y; Billett H; Saada M; Simone K; Stahl L; Szymanski J; Goldstein DY; Reyes Gil M J Med Internet Res; 2021 Feb; 23(2):e23458. PubMed ID: 33539308 [TBL] [Abstract][Full Text] [Related]
18. Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Pereira S; Meier R; McKinley R; Wiest R; Alves V; Silva CA; Reyes M Med Image Anal; 2018 Feb; 44():228-244. PubMed ID: 29289703 [TBL] [Abstract][Full Text] [Related]
19. An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates. Cha Y; Shin J; Go B; Lee DS; Kim Y; Kim T; Park YS J Environ Manage; 2021 Aug; 291():112719. PubMed ID: 33946026 [TBL] [Abstract][Full Text] [Related]
20. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]