These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 31357998)

  • 21. Evaluation of nutritional status and clinical depression classification using an explainable machine learning method.
    Hosseinzadeh Kasani P; Lee JE; Park C; Yun CH; Jang JW; Lee SA
    Front Nutr; 2023; 10():1165854. PubMed ID: 37229464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MS-CPFI: A model-agnostic Counterfactual Perturbation Feature Importance algorithm for interpreting black-box Multi-State models.
    Cottin A; Zulian M; Pécuchet N; Guilloux A; Katsahian S
    Artif Intell Med; 2024 Jan; 147():102741. PubMed ID: 38184354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity.
    Xiao LM; Wan YQ; Jiang ZR
    BMC Bioinformatics; 2021 Dec; 22(1):589. PubMed ID: 34903170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease.
    Shi H; Yang D; Tang K; Hu C; Li L; Zhang L; Gong T; Cui Y
    Clin Nutr; 2022 Jan; 41(1):202-210. PubMed ID: 34906845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Mobile App That Addresses Interpretability Challenges in Machine Learning-Based Diabetes Predictions: Survey-Based User Study.
    Hendawi R; Li J; Roy S
    JMIR Form Res; 2023 Nov; 7():e50328. PubMed ID: 37955948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing an Interpretability-Based Model to Explain the Artificial Intelligence Algorithms in Healthcare.
    Ennab M; Mcheick H
    Diagnostics (Basel); 2022 Jun; 12(7):. PubMed ID: 35885463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpretable Machine Learning for the Prediction of Amputation Risk Following Lower Extremity Infrainguinal Endovascular Interventions for Peripheral Arterial Disease.
    Cox M; Reid N; Panagides JC; Di Capua J; DeCarlo C; Dua A; Kalva S; Kalpathy-Cramer J; Daye D
    Cardiovasc Intervent Radiol; 2022 May; 45(5):633-640. PubMed ID: 35322303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Explainable Artificial Intelligence Software Tool for Weight Management Experts (PRIMO): Mixed Methods Study.
    Fernandes GJ; Choi A; Schauer JM; Pfammatter AF; Spring BJ; Darwiche A; Alshurafa NI
    J Med Internet Res; 2023 Sep; 25():e42047. PubMed ID: 37672333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Clinical Translation of Machine Learning Approaches Through Clinician-Tailored Visual Displays of Black Box Algorithms: Development and Validation.
    Wongvibulsin S; Wu KC; Zeger SL
    JMIR Med Inform; 2020 Jun; 8(6):e15791. PubMed ID: 32515746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Demystifying the Black Box: The Importance of Interpretability of Predictive Models in Neurocritical Care.
    Moss L; Corsar D; Shaw M; Piper I; Hawthorne C
    Neurocrit Care; 2022 Aug; 37(Suppl 2):185-191. PubMed ID: 35523917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning Models for the Automatic Detection of Exercise Thresholds in Cardiopulmonary Exercising Tests: From Regression to Generation to Explanation.
    Zignoli A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ranking Rule-Based Automatic Explanations for Machine Learning Predictions on Asthma Hospital Encounters in Patients With Asthma: Retrospective Cohort Study.
    Zhang X; Luo G
    JMIR Med Inform; 2021 Aug; 9(8):e28287. PubMed ID: 34383673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polynomial-SHAP analysis of liver disease markers for capturing of complex feature interactions in machine learning models.
    Ejiyi CJ; Cai D; Ejiyi MB; Chikwendu IA; Coker K; Oluwasanmi A; Bamisile OF; Ejiyi TU; Qin Z
    Comput Biol Med; 2024 Nov; 182():109168. PubMed ID: 39342675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Explainable machine learning improves interpretability in the predictive modeling of biological stream conditions in the Chesapeake Bay Watershed, USA.
    Maloney KO; Buchanan C; Jepsen RD; Krause KP; Cashman MJ; Gressler BP; Young JA; Schmid M
    J Environ Manage; 2022 Nov; 322():116068. PubMed ID: 36058075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals.
    Khare SK; Acharya UR
    Comput Biol Med; 2023 Mar; 155():106676. PubMed ID: 36827785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel coupling interpretable machine learning framework for water quality prediction and environmental effect understanding in different flow discharge regulations of hydro-projects.
    Nong X; Lai C; Chen L; Wei J
    Sci Total Environ; 2024 Nov; 950():175281. PubMed ID: 39117235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning-based prediction of disability risk in geriatric patients with hypertension for different time intervals.
    Xiang C; Wu Y; Jia M; Fang Y
    Arch Gerontol Geriatr; 2023 Feb; 105():104835. PubMed ID: 36335673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases.
    Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S
    Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive modeling of consumer purchase behavior on social media: Integrating theory of planned behavior and machine learning for actionable insights.
    Azad MS; Khan SS; Hossain R; Rahman R; Momen S
    PLoS One; 2023; 18(12):e0296336. PubMed ID: 38150431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpretable machine-learning model for real-time, clustered risk factor analysis of sepsis and septic death in critical care.
    Jiang Z; Bo L; Wang L; Xie Y; Cao J; Yao Y; Lu W; Deng X; Yang T; Bian J
    Comput Methods Programs Biomed; 2023 Nov; 241():107772. PubMed ID: 37657148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.