These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 31357998)
41. Prediction of Acute Kidney Injury After Cardiac Surgery Using Interpretable Machine Learning. Ejmalian A; Aghaei A; Nabavi S; Abedzadeh Darabad M; Tajbakhsh A; Abin AA; Ebrahimi Moghaddam M; Dabbagh A; Jahangirifard A; Memary E; Sayyadi S Anesth Pain Med; 2022 Aug; 12(4):e127140. PubMed ID: 36937087 [TBL] [Abstract][Full Text] [Related]
42. Prediction of 30-day mortality in heart failure patients with hypoxic hepatitis: Development and external validation of an interpretable machine learning model. Sun R; Wang X; Jiang H; Yan Y; Dong Y; Yan W; Luo X; Miu H; Qi L; Huang Z Front Cardiovasc Med; 2022; 9():1035675. PubMed ID: 36386374 [TBL] [Abstract][Full Text] [Related]
43. A critical moment in machine learning in medicine: on reproducible and interpretable learning. Ciobanu-Caraus O; Aicher A; Kernbach JM; Regli L; Serra C; Staartjes VE Acta Neurochir (Wien); 2024 Jan; 166(1):14. PubMed ID: 38227273 [TBL] [Abstract][Full Text] [Related]
44. Interpretable prediction of mortality in liver transplant recipients based on machine learning. Zhang X; Gavaldà R; Baixeries J Comput Biol Med; 2022 Dec; 151(Pt A):106188. PubMed ID: 36306583 [TBL] [Abstract][Full Text] [Related]
45. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
46. Machine Learning Explainability in Breast Cancer Survival. Jansen T; Geleijnse G; Van Maaren M; Hendriks MP; Ten Teije A; Moncada-Torres A Stud Health Technol Inform; 2020 Jun; 270():307-311. PubMed ID: 32570396 [TBL] [Abstract][Full Text] [Related]
47. Machine learning interpretability methods to characterize the importance of hematologic biomarkers in prognosticating patients with suspected infection. Upadhyaya DP; Tarabichi Y; Prantzalos K; Ayub S; Kaelber DC; Sahoo SS Comput Biol Med; 2024 Dec; 183():109251. PubMed ID: 39393128 [TBL] [Abstract][Full Text] [Related]
49. Seasonal prediction of daily PM Wu Y; Lin S; Shi K; Ye Z; Fang Y Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424 [TBL] [Abstract][Full Text] [Related]
50. Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach. Yang Y; Yuan Y; Han Z; Liu G Indoor Air; 2022 Feb; 32(2):e12984. PubMed ID: 35048421 [TBL] [Abstract][Full Text] [Related]
51. Rupture Risk Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on Multidimensional Data. Ou C; Liu J; Qian Y; Chong W; Zhang X; Liu W; Su H; Zhang N; Zhang J; Duan CZ; He X Front Neurol; 2020; 11():570181. PubMed ID: 33424738 [No Abstract] [Full Text] [Related]
52. Machine learning model successfully identifies important clinical features for predicting outpatients with rotator cuff tears. Li C; Alike Y; Hou J; Long Y; Zheng Z; Meng K; Yang R Knee Surg Sports Traumatol Arthrosc; 2023 Jul; 31(7):2615-2623. PubMed ID: 36629889 [TBL] [Abstract][Full Text] [Related]
53. Interpretable machine learning models for hospital readmission prediction: a two-step extracted regression tree approach. Gao X; Alam S; Shi P; Dexter F; Kong N BMC Med Inform Decis Mak; 2023 Jun; 23(1):104. PubMed ID: 37277767 [TBL] [Abstract][Full Text] [Related]
54. Using Machine Learning to Define the Association between Cardiorespiratory Fitness and All-Cause Mortality (from the Henry Ford Exercise Testing Project). Al-Mallah MH; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Blaha MJ; Ahmed HM; Ehrman JK; Keteyian SJ; Sakr S Am J Cardiol; 2017 Dec; 120(11):2078-2084. PubMed ID: 28951020 [TBL] [Abstract][Full Text] [Related]
55. Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up. Dai C; Fan Y; Li Y; Bao X; Li Y; Su M; Yao Y; Deng K; Xing B; Feng F; Feng M; Wang R Front Endocrinol (Lausanne); 2020; 11():643. PubMed ID: 33042013 [No Abstract] [Full Text] [Related]
56. Interpretable machine learning for dementia: A systematic review. Martin SA; Townend FJ; Barkhof F; Cole JH Alzheimers Dement; 2023 May; 19(5):2135-2149. PubMed ID: 36735865 [TBL] [Abstract][Full Text] [Related]
57. On the interpretability of machine learning methods in crash frequency modeling and crash modification factor development. Wen X; Xie Y; Jiang L; Li Y; Ge T Accid Anal Prev; 2022 Apr; 168():106617. PubMed ID: 35202941 [TBL] [Abstract][Full Text] [Related]
58. Improved Interpretability of Machine Learning Model Using Unsupervised Clustering: Predicting Time to First Treatment in Chronic Lymphocytic Leukemia. Chen D; Goyal G; Go RS; Parikh SA; Ngufor CG JCO Clin Cancer Inform; 2019 May; 3():1-11. PubMed ID: 31112417 [TBL] [Abstract][Full Text] [Related]
59. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan. Pai KC; Su SA; Chan MC; Wu CL; Chao WC BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785 [TBL] [Abstract][Full Text] [Related]
60. Interpretability methods of machine learning algorithms with applications in breast cancer diagnosis. Karatza P; Dalakleidi K; Athanasiou M; Nikita KS Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2310-2313. PubMed ID: 34891748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]