These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31358238)

  • 1. How can controlled human infection models accelerate clinical development and policy pathways for vaccines against Shigella?
    Giersing BK; Porter CK; Kotloff K; Neels P; Cravioto A; MacLennan CA
    Vaccine; 2019 Aug; 37(34):4778-4783. PubMed ID: 31358238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaccines Against Shigella and Enterotoxigenic Escherichia coli: A summary of the 2018 VASE Conference.
    Barry E; Cassels F; Riddle M; Walker R; Wierzba T
    Vaccine; 2019 Aug; 37(34):4768-4774. PubMed ID: 31358236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical product attributes in development of an oral enteric vaccine for infants.
    White JA; Lal M
    Vaccine; 2019 Aug; 37(34):4800-4804. PubMed ID: 31358239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions.
    Mottram L; Chakraborty S; Cox E; Fleckenstein J
    Vaccine; 2019 Aug; 37(34):4805-4810. PubMed ID: 30709726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development.
    Mani S; Toapanta FR; McArthur MA; Qadri F; Svennerholm AM; Devriendt B; Phalipon A; Cohen D; Sztein MB
    Vaccine; 2019 Aug; 37(34):4787-4793. PubMed ID: 31230883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The way forward for ETEC controlled human infection models (CHIMs).
    Hanevik K; Chen WH; Talaat KR; Porter C; Bourgeois L
    Vaccine; 2019 Aug; 37(34):4794-4799. PubMed ID: 30709728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications and measurement of herd protection (indirect effects) for enteric vaccine development.
    Wierzba TF
    Vaccine; 2019 Aug; 37(34):4775-4777. PubMed ID: 31358237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical endpoints for efficacy studies.
    Porter CK; Gutierrez RL; Kotloff KL
    Vaccine; 2019 Aug; 37(34):4814-4822. PubMed ID: 30981626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing the true burden of Shigella and ETEC: The way forward.
    Khalil I; Troeger CE; Blacker BF; Reiner RC
    Vaccine; 2019 Aug; 37(34):4784-4786. PubMed ID: 30711317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing and utilizing controlled human models of infection.
    Porter CK; Louis Bourgeois A; Frenck RW; Prouty M; Maier N; Riddle MS
    Vaccine; 2017 Dec; 35(49 Pt A):6813-6818. PubMed ID: 28583306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using advocacy to increase investment in enteric vaccine development.
    Randall H; Kallen LE
    Vaccine; 2019 Aug; 37(34):4811-4813. PubMed ID: 30737042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccines against Shigella and enterotoxigenic Escherichia coli: A summary of the 2016 VASE Conference.
    Walker RI; Wierzba TF; Mani S; Bourgeois AL
    Vaccine; 2017 Dec; 35(49 Pt A):6775-6782. PubMed ID: 28987444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WHO consultation on ETEC and Shigella burden of disease, Geneva, 6-7th April 2017: Meeting report.
    Hosangadi D; Smith PG; Kaslow DC; Giersing BK;
    Vaccine; 2019 Nov; 37(50):7381-7390. PubMed ID: 29352598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preface.
    Walker RI; Riddle MS; Clifford A
    Vaccine; 2019 Aug; 37(34):4767. PubMed ID: 31300286
    [No Abstract]   [Full Text] [Related]  

  • 15. Combination vaccine strategies to prevent enteric infections.
    Walker R; Dull P
    Vaccine; 2017 Dec; 35(49 Pt A):6790-6792. PubMed ID: 28705515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road.
    Levine MM; Kotloff KL; Barry EM; Pasetti MF; Sztein MB
    Nat Rev Microbiol; 2007 Jul; 5(7):540-53. PubMed ID: 17558427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clinically parameterized mathematical model of Shigella immunity to inform vaccine design.
    Davis CL; Wahid R; Toapanta FR; Simon JK; Sztein MB
    PLoS One; 2018; 13(1):e0189571. PubMed ID: 29304144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving chances for successful clinical outcomes with better preclinical models.
    Wenzel H; Kaminski RW; Clarkson KA; Maciel M; Smith MA; Zhang W; Oaks EV
    Vaccine; 2017 Dec; 35(49 Pt A):6798-6802. PubMed ID: 28890194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shigella vaccine development: prospective animal models and current status.
    Kim YJ; Yeo SG; Park JH; Ko HJ
    Curr Pharm Biotechnol; 2013; 14(10):903-12. PubMed ID: 24372251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2022 Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference: Summary of abstract-based presentations.
    Banerjee S; Barry EM; Baqar S; Louis Bourgeois A; Campo JJ; Choy RKM; Chakraborty S; Clifford A; Deal C; Estrada M; Fleckenstein J; Hasso-Agopsowicz M; Hausdorff W; Khalil I; Maier N; Mubanga C; Platts-Mills JA; Porter C; Qadri F; Simuyandi M; Walker R; White JA
    Vaccine; 2024 Mar; 42(7):1454-1460. PubMed ID: 38030421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.