These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31358395)

  • 21. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches.
    Chen J; Sun K; Sun Y; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1153-1156. PubMed ID: 34891492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects.
    Lu G; Yang F; Taylor JA; Stein JF
    J Med Eng Technol; 2009; 33(8):634-41. PubMed ID: 19848857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
    Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM
    Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating Systolic Blood Pressure Using Convolutional Neural Networks.
    Rastegar S; Gholamhosseini H; Lowe A; Mehdipour F; Lindén M
    Stud Health Technol Inform; 2019; 261():143-149. PubMed ID: 31156106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-Related Changes in the Characteristics of the Elderly Females Using the Signal Features of an Earlobe Photoplethysmogram.
    Seo JW; Choi J; Lee K; Kim JU
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting Arterial Stiffness From Single-Channel Photoplethysmography Signal: A Feature Interaction-Based Approach.
    Chen Y; Yang X; Song R; Liu X; Zhang J
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):3928-3941. PubMed ID: 38551821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
    Yıldırım Ö; Pławiak P; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Heart-Rate-Variability Recording With Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography.
    Plews DJ; Scott B; Altini M; Wood M; Kilding AE; Laursen PB
    Int J Sports Physiol Perform; 2017 Nov; 12(10):1324-1328. PubMed ID: 28290720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intelligent Electrocardiogram Acquisition Via Ubiquitous Photoplethysmography Monitoring.
    Liu Z; Zhu T; Lu L; Zhang YT; Clifton DA
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1321-1330. PubMed ID: 38109250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoplethysmogram based vascular aging assessment using the deep convolutional neural network.
    Shin H; Noh G; Choi BM
    Sci Rep; 2022 Jul; 12(1):11377. PubMed ID: 35790836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobile Phone-Based Use of the Photoplethysmography Technique to Detect Atrial Fibrillation in Primary Care: Diagnostic Accuracy Study of the FibriCheck App.
    Proesmans T; Mortelmans C; Van Haelst R; Verbrugge F; Vandervoort P; Vaes B
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e12284. PubMed ID: 30916656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardiac arrhythmia detection using photoplethysmography.
    Paradkar N; Chowdhury SR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():113-116. PubMed ID: 29059823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants.
    Charlton PH; Bonnici T; Tarassenko L; Alastruey J; Clifton DA; Beale R; Watkinson PJ
    Physiol Meas; 2017 May; 38(5):669-690. PubMed ID: 28296645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diagnostic Performance of a Smart Device With Photoplethysmography Technology for Atrial Fibrillation Detection: Pilot Study (Pre-mAFA II Registry).
    Fan YY; Li YG; Li J; Cheng WK; Shan ZL; Wang YT; Guo YT
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e11437. PubMed ID: 30835243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography.
    Selvaraj N; Jaryal A; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2008; 32(6):479-84. PubMed ID: 18663635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel photoplethysmography cardiovascular assessments in patients with Raynaud's phenomenon and systemic sclerosis: a pilot study.
    McKay ND; Griffiths B; Di Maria C; Hedley S; Murray A; Allen J
    Rheumatology (Oxford); 2014 Oct; 53(10):1855-63. PubMed ID: 24850874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.