BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31358426)

  • 1. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant.
    Yahya L; Harun R; Abdullah LC
    Sci Rep; 2020 Dec; 10(1):22355. PubMed ID: 33339883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving growth rate of microalgae in a 1191m(2) raceway pond to fix CO2 from flue gas in a coal-fired power plant.
    Cheng J; Yang Z; Huang Y; Huang L; Hu L; Xu D; Zhou J; Cen K
    Bioresour Technol; 2015 Aug; 190():235-41. PubMed ID: 25958147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-cycle assessment of flue gas CO
    Ye Q; Shen Y; Zhang Q; Wu X; Guo W
    Sci Total Environ; 2022 Nov; 848():157728. PubMed ID: 35917957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas.
    Aslam A; Thomas-Hall SR; Mughal TA; Schenk PM
    Bioresour Technol; 2017 Jun; 233():271-283. PubMed ID: 28285218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives.
    Singh HM; Kothari R; Gupta R; Tyagi VV
    J Environ Manage; 2019 Sep; 245():519-539. PubMed ID: 30803750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds.
    Zhu B; Sun F; Yang M; Lu L; Yang G; Pan K
    Bioresour Technol; 2014 Dec; 174():53-9. PubMed ID: 25463781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategic evaluation of limiting factors affecting algal growth - An approach to waste mitigation and carbon dioxide sequestration.
    Yadav G; Mathimani T; Sekar M; Sindhu R; Pugazhendhi A
    Sci Total Environ; 2021 Nov; 796():149049. PubMed ID: 34328896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas.
    Cheng D; Li X; Yuan Y; Yang C; Tang T; Zhao Q; Sun Y
    Sci Total Environ; 2019 Feb; 650(Pt 2):2931-2938. PubMed ID: 30373069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation.
    Duarte JH; Fanka LS; Costa JAV
    Bioresour Technol; 2016 Aug; 214():159-165. PubMed ID: 27132223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.
    Lee JY; Keener TC; Yang YJ
    J Air Waste Manag Assoc; 2009 Jun; 59(6):725-32. PubMed ID: 19603740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving Zero/Negative-Emissions Coal-Fired Power Plants Using Amine-Based Postcombustion CO
    Jiang K; Feron P; Cousins A; Zhai R; Li K
    Environ Sci Technol; 2020 Feb; 54(4):2429-2438. PubMed ID: 31990528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.