BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 31358628)

  • 1. In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments.
    Dregni AJ; Mandala VS; Wu H; Elkins MR; Wang HK; Hung I; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16357-16366. PubMed ID: 31358628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance.
    Dregni AJ; Duan P; Hong M
    Biochemistry; 2020 Jun; 59(24):2237-2248. PubMed ID: 32453948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of the C-Terminal Domain in the β-Sheet Core of Heparin-Fibrillized Three-Repeat Tau Protein Revealed by Solid-State Nuclear Magnetic Resonance Spectroscopy.
    Dregni AJ; Wang HK; Wu H; Duan P; Jin J; DeGrado WF; Hong M
    J Am Chem Soc; 2021 May; 143(20):7839-7851. PubMed ID: 33983722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural impact of heparin binding to full-length Tau as studied by NMR spectroscopy.
    Sibille N; Sillen A; Leroy A; Wieruszeski JM; Mulloy B; Landrieu I; Lippens G
    Biochemistry; 2006 Oct; 45(41):12560-72. PubMed ID: 17029411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of each repeat structure of the microtubule-binding domain of the tau protein in in vitro aggregation.
    Tomoo K; Yao TM; Minoura K; Hiraoka S; Sumida M; Taniguchi T; Ishida T
    J Biochem; 2005 Oct; 138(4):413-23. PubMed ID: 16272135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of AT8 and PHF1 phosphomimetic tau: Insights into the posttranslational modification code of tau aggregation.
    Mammeri NE; Dregni AJ; Duan P; Hong M
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2316175121. PubMed ID: 38408247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Sheet core of tau paired helical filaments revealed by solid-state NMR.
    Daebel V; Chinnathambi S; Biernat J; Schwalbe M; Habenstein B; Loquet A; Akoury E; Tepper K; Müller H; Baldus M; Griesinger C; Zweckstetter M; Mandelkow E; Vijayan V; Lange A
    J Am Chem Soc; 2012 Aug; 134(34):13982-9. PubMed ID: 22862303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel tau filament fold in corticobasal degeneration.
    Zhang W; Tarutani A; Newell KL; Murzin AG; Matsubara T; Falcon B; Vidal R; Garringer HJ; Shi Y; Ikeuchi T; Murayama S; Ghetti B; Hasegawa M; Goedert M; Scheres SHW
    Nature; 2020 Apr; 580(7802):283-287. PubMed ID: 32050258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid fibril structures of tau: Conformational plasticity of the second microtubule-binding repeat.
    El Mammeri N; Duan P; Dregni AJ; Hong M
    Sci Adv; 2023 Jul; 9(28):eadh4731. PubMed ID: 37450599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Misfolding and Self-Assembly Dynamics of Microtubule-Binding Repeats of the Alzheimer-Related Protein Tau.
    He H; Liu Y; Sun Y; Ding F
    J Chem Inf Model; 2021 Jun; 61(6):2916-2925. PubMed ID: 34032430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein.
    Okuyama K; Nishiura C; Mizushima F; Minoura K; Sumida M; Taniguchi T; Tomoo K; Ishida T
    FEBS J; 2008 Apr; 275(7):1529-1539. PubMed ID: 18312411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-induced tau amyloid fibrils.
    El Mammeri N; Gampp O; Duan P; Hong M
    Commun Biol; 2023 Apr; 6(1):467. PubMed ID: 37117483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Observation of the Self-Aggregation of R3R4 Bi-repeat of Tau Protein.
    Jayan P; Vahid AA; Kizhakkeduth ST; Muhammed SOH; Shibina AB; Vijayan V
    Chembiochem; 2021 Jun; 22(12):2093-2097. PubMed ID: 33826208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations.
    Dong X; Qi R; Qiao Q; Li X; Li F; Wan J; Zhang Q; Wei G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20406-20418. PubMed ID: 34494046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.
    Andronesi OC; von Bergen M; Biernat J; Seidel K; Griesinger C; Mandelkow E; Baldus M
    J Am Chem Soc; 2008 May; 130(18):5922-8. PubMed ID: 18386894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation.
    Liu H; Zhong H; Liu X; Zhou S; Tan S; Liu H; Yao X
    ACS Chem Neurosci; 2019 Dec; 10(12):4810-4823. PubMed ID: 31661961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation.
    Annadurai N; Malina L; Malohlava J; Hajdúch M; Das V
    Biochimie; 2022 Sep; 200():79-86. PubMed ID: 35623497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms.
    Weismiller HA; Murphy R; Wei G; Ma B; Nussinov R; Margittai M
    J Biol Chem; 2018 Nov; 293(45):17336-17348. PubMed ID: 30242125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges.
    Zheng H; Sun H; Cai Q; Tai HC
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.