These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31358813)

  • 1. The influence of dilute aluminum and molybdenum on stacking fault and twin formation in FeNiCoCr-based high entropy alloys based on density functional theory.
    Yu P; Zhuang Y; Chou JP; Wei J; Lo YC; Hu A
    Sci Rep; 2019 Jul; 9(1):10940. PubMed ID: 31358813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles.
    Ikeda Y; Körmann F; Tanaka I; Neugebauer J
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy.
    Sun X; Zhang H; Li W; Ding X; Wang Y; Vitos L
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31887990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design metastability in high-entropy alloys by tailoring unstable fault energies.
    Wang X; De Vecchis RR; Li C; Zhang H; Hu X; Sridar S; Wang Y; Chen W; Xiong W
    Sci Adv; 2022 Sep; 8(36):eabo7333. PubMed ID: 36083911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of transformation-mediated twinning.
    Lu S; Sun X; Tian Y; An X; Li W; Chen Y; Zhang H; Vitos L
    PNAS Nexus; 2023 Jan; 2(1):pgac282. PubMed ID: 36712941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of Deformation Twinning in bcc Tungsten and Molybdenum.
    Xiao J; Li S; Ma X; Gao J; Deng C; Wu Z; Zhu Y
    Phys Rev Lett; 2023 Sep; 131(13):136101. PubMed ID: 37832014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.
    Tian YZ; Zhao LJ; Chen S; Shibata A; Zhang ZF; Tsuji N
    Sci Rep; 2015 Nov; 5():16707. PubMed ID: 26582568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy.
    Ding H; Du Z; Zhang H; Liu Y; Zhao S; Yang Y; Wang C; Lei S; Geng R; Wang C
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Scale In Situ Observations of Reversible Phase Transformation Assisted Twinning in a CrCoNi Medium-Entropy Alloy.
    Chu S; Zhang F; Chen D; Chen M; Liu P
    Nano Lett; 2024 Mar; 24(12):3624-3630. PubMed ID: 38421603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized stacking fault energies of alloys.
    Li W; Lu S; Hu QM; Kwon SK; Johansson B; Vitos L
    J Phys Condens Matter; 2014 Jul; 26(26):265005. PubMed ID: 24903220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative deformation in high-entropy alloys at ultralow temperatures.
    Naeem M; He H; Zhang F; Huang H; Harjo S; Kawasaki T; Wang B; Lan S; Wu Z; Wang F; Wu Y; Lu Z; Zhang Z; Liu CT; Wang XL
    Sci Adv; 2020 Mar; 6(13):eaax4002. PubMed ID: 32258390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New twinning route in face-centered cubic nanocrystalline metals.
    Wang L; Guan P; Teng J; Liu P; Chen D; Xie W; Kong D; Zhang S; Zhu T; Zhang Z; Ma E; Chen M; Han X
    Nat Commun; 2017 Dec; 8(1):2142. PubMed ID: 29247224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys.
    Ding J; Yu Q; Asta M; Ritchie RO
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8919-8924. PubMed ID: 30127034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity Improvement in a Co-Rich Co
    Li Y; Chen Y; Nutor RK; Wang N; Cao Q; Wang X; Zhang D; Jiang JZ
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range-A Review.
    Kasar AK; Scalaro K; Menezes PL
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-strong nanotwinned Al-Ni solid solution alloys with significant plasticity.
    Zhang YF; Li Q; Xue SC; Ding J; Xie DY; Li J; Niu T; Wang H; Wang H; Wang J; Zhang X
    Nanoscale; 2018 Nov; 10(46):22025-22034. PubMed ID: 30452036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy.
    Pei Z; Zhao S; Detrois M; Jablonski PD; Hawk JA; Alman DE; Asta M; Minor AM; Gao MC
    Nat Commun; 2023 May; 14(1):2519. PubMed ID: 37130855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal spin fluctuations in CoCrFeMnNi high entropy alloy.
    Dong Z; Schönecker S; Li W; Chen D; Vitos L
    Sci Rep; 2018 Aug; 8(1):12211. PubMed ID: 30111892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation induced microtwins and stacking faults in aluminum single crystal.
    Han WZ; Cheng GM; Li SX; Wu SD; Zhang ZF
    Phys Rev Lett; 2008 Sep; 101(11):115505. PubMed ID: 18851297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical data set for first-principles calculations of stacking fault energies in an AlNbTaTiV high entropy alloy.
    Strother JD; Hargather CZ
    Data Brief; 2021 Feb; 34():106670. PubMed ID: 33426240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.