BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31358845)

  • 1. Extensive post-transcriptional buffering of gene expression in the response to severe oxidative stress in baker's yeast.
    Blevins WR; Tavella T; Moro SG; Blasco-Moreno B; Closa-Mosquera A; Díez J; Carey LB; Albà MM
    Sci Rep; 2019 Jul; 9(1):11005. PubMed ID: 31358845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational regulation in response to stress in Saccharomyces cerevisiae.
    Crawford RA; Pavitt GD
    Yeast; 2019 Jan; 36(1):5-21. PubMed ID: 30019452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RiboDiPA: a novel tool for differential pattern analysis in Ribo-seq data.
    Li K; Hope CM; Wang XA; Wang JP
    Nucleic Acids Res; 2020 Dec; 48(21):12016-12029. PubMed ID: 33211868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-dependent coordination of transcriptome and translatome in yeast.
    Halbeisen RE; Gerber AP
    PLoS Biol; 2009 May; 7(5):e1000105. PubMed ID: 19419242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response.
    Kershaw CJ; Costello JL; Castelli LM; Talavera D; Rowe W; Sims PF; Ashe MP; Hubbard SJ; Pavitt GD; Grant CM
    PLoS Genet; 2015 Jan; 11(1):e1004903. PubMed ID: 25569619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel insights into global translational regulation through Pumilio family RNA-binding protein Puf3p revealed by ribosomal profiling.
    Wang Z; Sun X; Wee J; Guo X; Gu Z
    Curr Genet; 2019 Feb; 65(1):201-212. PubMed ID: 29951697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAN1 Arginine Permease Deficiency Extends Yeast Replicative Lifespan via Translational Activation of Stress Response Genes.
    Beaupere C; Wasko BM; Lorusso J; Kennedy BK; Kaeberlein M; Labunskyy VM
    Cell Rep; 2017 Feb; 18(8):1884-1892. PubMed ID: 28228255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability.
    Vilela C; Linz B; Rodrigues-Pousada C; McCarthy JE
    Nucleic Acids Res; 1998 Mar; 26(5):1150-9. PubMed ID: 9469820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors.
    Grigull J; Mnaimneh S; Pootoolal J; Robinson MD; Hughes TR
    Mol Cell Biol; 2004 Jun; 24(12):5534-47. PubMed ID: 15169913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity of mRNA degradation by autophagy in yeast.
    Makino S; Kawamata T; Iwasaki S; Ohsumi Y
    Nat Commun; 2021 Apr; 12(1):2316. PubMed ID: 33875662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast.
    McManus CJ; May GE; Spealman P; Shteyman A
    Genome Res; 2014 Mar; 24(3):422-30. PubMed ID: 24318730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of hypoxic gene expression in yeast.
    Zitomer RS; Carrico P; Deckert J
    Kidney Int; 1997 Feb; 51(2):507-13. PubMed ID: 9027731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective profiling of ribosomes associated with yeast Upf proteins.
    Ganesan R; Leszyk J; Jacobson A
    Methods; 2019 Feb; 155():58-67. PubMed ID: 30593864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.
    Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H
    Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a flour-free model dough system for throughput studies of baker's yeast.
    Panadero J; Randez-Gil F; Prieto JA
    Appl Environ Microbiol; 2005 Mar; 71(3):1142-7. PubMed ID: 15746311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae.
    Arava Y; Wang Y; Storey JD; Liu CL; Brown PO; Herschlag D
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3889-94. PubMed ID: 12660367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production.
    Nakamura T; Mizukami-Murata S; Ando A; Murata Y; Takagi H; Shima J
    J Biosci Bioeng; 2008 Oct; 106(4):405-8. PubMed ID: 19000619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors.
    Requião RD; de Souza HJ; Rossetto S; Domitrovic T; Palhano FL
    RNA Biol; 2016 Jun; 13(6):561-8. PubMed ID: 27064519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability.
    Vilela C; Ramirez CV; Linz B; Rodrigues-Pousada C; McCarthy JE
    EMBO J; 1999 Jun; 18(11):3139-52. PubMed ID: 10357825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.