These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31359031)

  • 1. CoBAMP: a Python framework for metabolic pathway analysis in constraint-based models.
    Vieira V; Rocha M
    Bioinformatics; 2019 Dec; 35(24):5361-5362. PubMed ID: 31359031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.
    Song HS; Goldberg N; Mahajan A; Ramkrishna D
    Bioinformatics; 2017 Aug; 33(15):2345-2353. PubMed ID: 28369193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach.
    Guil F; Hidalgo JF; García JM
    Bioinformatics; 2020 Aug; 36(14):4163-4170. PubMed ID: 32348455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux tope analysis: studying the coordination of reaction directions in metabolic networks.
    Gerstl MP; Müller S; Regensburger G; Zanghellini J
    Bioinformatics; 2019 Jan; 35(2):266-273. PubMed ID: 30649351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Deletion Algorithms for Minimum Reaction Network Design by Mixed-Integer Linear Programming for Metabolite Production in Constraint-Based Models: gDel_minRN.
    Tamura T; Muto-Fujita A; Tohsato Y; Kosaka T
    J Comput Biol; 2023 May; 30(5):553-568. PubMed ID: 36809057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyBEL: a computational framework for Biological Expression Language.
    Hoyt CT; Konotopez A; Ebeling C; Wren J
    Bioinformatics; 2018 Feb; 34(4):703-704. PubMed ID: 29048466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating flux balance calculations in genome-scale metabolic models by localizing the application of loopless constraints.
    Chan SHJ; Wang L; Dash S; Maranas CD
    Bioinformatics; 2018 Dec; 34(24):4248-4255. PubMed ID: 29868725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EFMlrs: a Python package for elementary flux mode enumeration via lexicographic reverse search.
    Buchner BA; Zanghellini J
    BMC Bioinformatics; 2021 Nov; 22(1):547. PubMed ID: 34758748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. StrainDesign: a comprehensive Python package for computational design of metabolic networks.
    Schneider P; Bekiaris PS; von Kamp A; Klamt S
    Bioinformatics; 2022 Oct; 38(21):4981-4983. PubMed ID: 36111857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gEFM: An Algorithm for Computing Elementary Flux Modes Using Graph Traversal.
    Ullah E; Aeron S; Hassoun S
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):122-34. PubMed ID: 26886737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Dec; 32(24):3807-3814. PubMed ID: 27559155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposing flux distributions into elementary flux modes in genome-scale metabolic networks.
    Chan SH; Ji P
    Bioinformatics; 2011 Aug; 27(16):2256-62. PubMed ID: 21685054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition.
    Hunt KA; Folsom JP; Taffs RL; Carlson RP
    Bioinformatics; 2014 Jun; 30(11):1569-78. PubMed ID: 24497502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for designing minimal microbial communities with desired metabolic capacities.
    Eng A; Borenstein E
    Bioinformatics; 2016 Jul; 32(13):2008-16. PubMed ID: 27153571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TreeEFM: calculating elementary flux modes using linear optimization in a tree-based algorithm.
    Pey J; Villar JA; Tobalina L; Rezola A; García JM; Beasley JE; Planes FJ
    Bioinformatics; 2015 Mar; 31(6):897-904. PubMed ID: 25380956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Fluxes, Enzymes, and Regulation in Genome-Scale Metabolic Models.
    Jensen PA
    Methods Mol Biol; 2018; 1716():337-351. PubMed ID: 29222761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mackinac: a bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models.
    Mundy M; Mendes-Soares H; Chia N
    Bioinformatics; 2017 Aug; 33(15):2416-2418. PubMed ID: 28379466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNApy: a CellNetAnalyzer GUI in Python for analyzing and designing metabolic networks.
    Thiele S; von Kamp A; Bekiaris PS; Schneider P; Klamt S
    Bioinformatics; 2022 Feb; 38(5):1467-1469. PubMed ID: 34878104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring branching pathways in genome-scale metabolic networks.
    Pitkänen E; Jouhten P; Rousu J
    BMC Syst Biol; 2009 Oct; 3():103. PubMed ID: 19874610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.