These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31359156)

  • 1. Minimum Interfacial Bonding Strength for Bilayer Tablets Determined Using a Survival Test.
    Chang SY; Sun CC
    Pharm Res; 2019 Jul; 36(10):139. PubMed ID: 31359156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial bonding in formulated bilayer tablets.
    Chang SY; Sun CC
    Eur J Pharm Biopharm; 2020 Feb; 147():69-75. PubMed ID: 31870828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of compaction properties and interfacial topography on the performance of bilayer tablets.
    Kottala N; Abebe A; Sprockel O; Akseli I; Nikfar F; Cuitiño AM
    Int J Pharm; 2012 Oct; 436(1-2):171-8. PubMed ID: 22728259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile and shear methods for measuring strength of bilayer tablets.
    Chang SY; Li JX; Sun CC
    Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A formulation strategy for solving the overgranulation problem in high shear wet granulation.
    Osei-Yeboah F; Zhang M; Feng Y; Sun CC
    J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets.
    Castrati L; Mazel V; Busignies V; Diarra H; Rossi A; Colombo P; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):709-716. PubMed ID: 27717917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets.
    Rahman Z; Zidan AS; Korang-Yeboah M; Yang Y; Siddiqui A; Shakleya D; Khan MA; Cruz C; Ashraf M
    Int J Pharm; 2017 Jan; 517(1-2):303-311. PubMed ID: 27956191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.
    Uehara N; Hayashi Y; Mochida H; Otoguro S; Onuki Y; Obata Y; Takayama K
    Drug Dev Ind Pharm; 2016 Jan; 42(1):116-122. PubMed ID: 25997364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new brittleness index for compacted tablets.
    Sonnergaard JM
    J Pharm Sci; 2013 Dec; 102(12):4347-52. PubMed ID: 24258281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size.
    Sebhatu T; Alderborn G
    Eur J Pharm Sci; 1999 Aug; 8(4):235-42. PubMed ID: 10425373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a new test for the easy characterization of the adhesion at the interface of bilayer tablets: proof-of-concept study by experimental design.
    Busignies V; Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2014 Dec; 477(1-2):476-84. PubMed ID: 25445527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach.
    Agrawal A; Dudhedia M; Deng W; Shepard K; Zhong L; Povilaitis E; Zimny E
    AAPS PharmSciTech; 2016 Feb; 17(1):214-32. PubMed ID: 26757898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of drug loading capacity of cellactose with two ad hoc processed lactose-cellulose direct compression excipients.
    Casalderrey M; Souto C; Concheiro A; Gómez-Amoza JL; Martínez-Pacheco R
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):398-401. PubMed ID: 15056951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physico-Mechanical Properties of Coprocessed Excipient MicroceLac® 100 by DM(3) Approach.
    Haware RV; Kancharla JP; Udupa AK; Staton S; Gupta MR; Al-Achi A; Stagner WC
    Pharm Res; 2015 Nov; 32(11):3618-35. PubMed ID: 26055403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets.
    Kottala N; Abebe A; Sprockel O; Bergum J; Nikfar F; Cuitiño AM
    AAPS PharmSciTech; 2012 Dec; 13(4):1190-6. PubMed ID: 22965660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: a technical note.
    Bhimte NA; Tayade PT
    AAPS PharmSciTech; 2007 Feb; 8(1):8. PubMed ID: 17408230
    [No Abstract]   [Full Text] [Related]  

  • 18. Evaluation of manufacturing process parameters causing multilayer tablets delamination.
    Bellini M; Walther M; Bodmeier R
    Int J Pharm; 2019 Oct; 570():118607. PubMed ID: 31421200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements.
    Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F
    Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.