These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 31359571)
1. Forecasting species range dynamics with process-explicit models: matching methods to applications. Briscoe NJ; Elith J; Salguero-Gómez R; Lahoz-Monfort JJ; Camac JS; Giljohann KM; Holden MH; Hradsky BA; Kearney MR; McMahon SM; Phillips BL; Regan TJ; Rhodes JR; Vesk PA; Wintle BA; Yen JDL; Guillera-Arroita G Ecol Lett; 2019 Nov; 22(11):1940-1956. PubMed ID: 31359571 [TBL] [Abstract][Full Text] [Related]
2. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Wisz MS; Pottier J; Kissling WD; Pellissier L; Lenoir J; Damgaard CF; Dormann CF; Forchhammer MC; Grytnes JA; Guisan A; Heikkinen RK; Høye TT; Kühn I; Luoto M; Maiorano L; Nilsson MC; Normand S; Öckinger E; Schmidt NM; Termansen M; Timmermann A; Wardle DA; Aastrup P; Svenning JC Biol Rev Camb Philos Soc; 2013 Feb; 88(1):15-30. PubMed ID: 22686347 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking novel approaches for modelling species range dynamics. Zurell D; Thuiller W; Pagel J; Cabral JS; Münkemüller T; Gravel D; Dullinger S; Normand S; Schiffers KH; Moore KA; Zimmermann NE Glob Chang Biol; 2016 Aug; 22(8):2651-64. PubMed ID: 26872305 [TBL] [Abstract][Full Text] [Related]
4. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Kearney M; Porter W Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic models for the spatial spread of species under climate change. Leroux SJ; Larrivée M; Boucher-Lalonde V; Hurford A; Zuloaga J; Kerr JT; Lutscher F Ecol Appl; 2013 Jun; 23(4):815-28. PubMed ID: 23865232 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Mathewson PD; Moyer-Horner L; Beever EA; Briscoe NJ; Kearney M; Yahn JM; Porter WP Glob Chang Biol; 2017 Mar; 23(3):1048-1064. PubMed ID: 27500587 [TBL] [Abstract][Full Text] [Related]
8. How complex should models be? Comparing correlative and mechanistic range dynamics models. Fordham DA; Bertelsmeier C; Brook BW; Early R; Neto D; Brown SC; Ollier S; Araújo MB Glob Chang Biol; 2018 Mar; 24(3):1357-1370. PubMed ID: 29152817 [TBL] [Abstract][Full Text] [Related]
9. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Briscoe NJ; Kearney MR; Taylor CA; Wintle BA Glob Chang Biol; 2016 Jul; 22(7):2425-39. PubMed ID: 26960136 [TBL] [Abstract][Full Text] [Related]
11. A framework for using niche models to estimate impacts of climate change on species distributions. Anderson RP Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379 [TBL] [Abstract][Full Text] [Related]
12. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog. Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328 [TBL] [Abstract][Full Text] [Related]
13. Improving species distribution forecasts by measuring and communicating uncertainty: An invasive species case study. Thomas SM; Verhoeven MR; Walsh JR; Larkin DJ; Hansen GJA Ecology; 2024 May; 105(5):e4297. PubMed ID: 38613235 [TBL] [Abstract][Full Text] [Related]
14. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes. Brown JL; Weber JJ; Alvarado-Serrano DF; Hickerson MJ; Franks SJ; Carnaval AC Am J Bot; 2016 Jan; 103(1):153-63. PubMed ID: 26747843 [TBL] [Abstract][Full Text] [Related]
15. A guide to ecosystem models and their environmental applications. Geary WL; Bode M; Doherty TS; Fulton EA; Nimmo DG; Tulloch AIT; Tulloch VJD; Ritchie EG Nat Ecol Evol; 2020 Nov; 4(11):1459-1471. PubMed ID: 32929239 [TBL] [Abstract][Full Text] [Related]
16. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663 [TBL] [Abstract][Full Text] [Related]
17. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions. Record S; Strecker A; Tuanmu MN; Beaudrot L; Zarnetske P; Belmaker J; Gerstner B PLoS One; 2018; 13(4):e0194650. PubMed ID: 29652936 [TBL] [Abstract][Full Text] [Related]
18. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950 [TBL] [Abstract][Full Text] [Related]
19. Spatial predictions at the community level: from current approaches to future frameworks. D'Amen M; Rahbek C; Zimmermann NE; Guisan A Biol Rev Camb Philos Soc; 2017 Feb; 92(1):169-187. PubMed ID: 26426308 [TBL] [Abstract][Full Text] [Related]
20. Population dynamics can be more important than physiological limits for determining range shifts under climate change. Fordham DA; Mellin C; Russell BD; Akçakaya RH; Bradshaw CJ; Aiello-Lammens ME; Caley JM; Connell SD; Mayfield S; Shepherd SA; Brook BW Glob Chang Biol; 2013 Oct; 19(10):3224-37. PubMed ID: 23907833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]