BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3135980)

  • 1. Structural and evolutionary aspects of the key enzymes in photorespiration; RuBisCO and glycolate oxidase.
    Brändén CI; Schneider G; Lindqvist Y; Andersson I; Knight S; Lorimer G
    Cold Spring Harb Symp Quant Biol; 1987; 52():491-8. PubMed ID: 3135980
    [No Abstract]   [Full Text] [Related]  

  • 2. Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO.
    Eisenberg D; Almassy RJ; Janson CA; Chapman MS; Suh SW; Cascio D; Smith WW
    Cold Spring Harb Symp Quant Biol; 1987; 52():483-90. PubMed ID: 2900091
    [No Abstract]   [Full Text] [Related]  

  • 3. Ribulose bisphosphate carboxylases from Chromatium vinosum and Rhodospirillum rubrum and their role in photosynthetic carbon assimilation.
    Akazawa T; Takabe T; Asami S; Kobayashi H
    Basic Life Sci; 1978; 11():209-26. PubMed ID: 106836
    [No Abstract]   [Full Text] [Related]  

  • 4. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice.
    Lu Y; Li Y; Yang Q; Zhang Z; Chen Y; Zhang S; Peng XX
    Physiol Plant; 2014 Mar; 150(3):463-76. PubMed ID: 24102419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein engineering of Rubisco.
    Brändén CI; Lindqvist Y; Schneider G
    Acta Crystallogr B; 1991 Dec; 47 ( Pt 6)():824-35. PubMed ID: 1772628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria.
    Whitney SM; Shaw DC; Yellowlees D
    Proc Biol Sci; 1995 Mar; 259(1356):271-5. PubMed ID: 7740046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubisco, an old challenge with new perspectives.
    Wildner GF; Schlitter J; Müller M
    Z Naturforsch C J Biosci; 1996; 51(5-6):273-86. PubMed ID: 8663895
    [No Abstract]   [Full Text] [Related]  

  • 8. Plasmid construction for genetic modification of dicotyledonous plants with a glycolate oxidizing pathway.
    Bai XL; Wang D; Wei LJ; Wang Y
    Genet Mol Res; 2011 Jul; 10(3):1356-63. PubMed ID: 21751162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthesis and growth of tobacco with a substituted bacterial Rubisco mirror the properties of the introduced enzyme.
    Whitney SM; Andrews TJ
    Plant Physiol; 2003 Sep; 133(1):287-94. PubMed ID: 12970494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of asparagine 111 of rubisco from Rhodospirillum rubrum alters the carboxylase/oxygenase specificity.
    Chène P; Day AG; Fersht AR
    J Mol Biol; 1992 Jun; 225(3):891-6. PubMed ID: 1602488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evolutionally conserved Lys122 is essential for function in Rhodospirillum rubrum bona fide RuBisCO and Bacillus subtilis RuBisCO-like protein.
    Nakano T; Ashida H; Mizohata E; Matsumura H; Yokota A
    Biochem Biophys Res Commun; 2010 Feb; 392(2):212-6. PubMed ID: 20060808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon isotope effect on carboxylation of ribulose bisphosphate catalyzed by ribulosebisphosphate carboxylase from Rhodospirillum rubrum.
    Roeske CA; O'Leary MH
    Biochemistry; 1985 Mar; 24(7):1603-7. PubMed ID: 3924094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and spinach with the new affinity label 2-bromo-1,5-dihydroxy-3-pentanone 1,5-bisphosphate.
    Donnelly MI; Hartman FC
    Biochem Biophys Res Commun; 1981 Nov; 103(1):161-7. PubMed ID: 6797428
    [No Abstract]   [Full Text] [Related]  

  • 15. Tertiary structure of plant RuBisCO: domains and their contacts.
    Chapman MS; Suh SW; Curmi PM; Cascio D; Smith WW; Eisenberg DS
    Science; 1988 Jul; 241(4861):71-4. PubMed ID: 3133767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reconstruction of the gene for ribulose bisphosphate carboxylase from Rhodospirillum rubrum that expresses the authentic enzyme in Escherichia coli.
    Larimer FW; Machanoff R; Hartman FC
    Gene; 1986; 41(1):113-20. PubMed ID: 3084334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and sequencing of cyanogen bromide fragments from ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum.
    Hartman FC; Stringer CD; Omnaas J; Donnelly MI; Fraij B
    Arch Biochem Biophys; 1982 Dec; 219(2):422-37. PubMed ID: 6819814
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of isoleucine-164 at the active site of rubisco from Rhodospirillum rubrum.
    Chène P; Day AG; Fersht AR
    Biochem Biophys Res Commun; 1997 Mar; 232(2):482-6. PubMed ID: 9125206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the biochemistry of the photorespiratory C2 cycle.
    Hagemann M; Fernie AR; Espie GS; Kern R; Eisenhut M; Reumann S; Bauwe H; Weber AP
    Plant Biol (Stuttg); 2013 Jul; 15(4):639-47. PubMed ID: 23198988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribulose 1,5-bisphosphate carboxylase from autotrophic micro-organisms [proceedings].
    Harrison D; Rogers LJ; Smith AJ
    Biochem Soc Trans; 1978; 6(6):1336-7. PubMed ID: 105954
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.