These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31360608)
1. Off-axis optical coherence tomography imaging of the crystalline lens to reconstruct the gradient refractive index using optical methods. de Castro A; Birkenfeld J; Heilman BM; Ruggeri M; Arrieta E; Parel JM; Manns F; Marcos S Biomed Opt Express; 2019 Jul; 10(7):3622-3634. PubMed ID: 31360608 [TBL] [Abstract][Full Text] [Related]
2. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism. Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582 [TBL] [Abstract][Full Text] [Related]
3. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses. Birkenfeld J; de Castro A; Marcos S Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101 [TBL] [Abstract][Full Text] [Related]
4. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses. de Castro A; Birkenfeld J; Maceo B; Manns F; Arrieta E; Parel JM; Marcos S Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6197-207. PubMed ID: 23927893 [TBL] [Abstract][Full Text] [Related]
5. Distortion correction of OCT images of the crystalline lens: gradient index approach. Siedlecki D; de Castro A; Gambra E; Ortiz S; Borja D; Uhlhorn S; Manns F; Marcos S; Parel JM Optom Vis Sci; 2012 May; 89(5):E709-18. PubMed ID: 22466105 [TBL] [Abstract][Full Text] [Related]
6. Age-dependent variation of the Gradient Index profile in human crystalline lenses. de Castro A; Siedlecki D; Borja D; Uhlhorn S; Parel JM; Manns F; Marcos S J Mod Opt; 2011; 58(19-20):1781-1787. PubMed ID: 22865954 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging. de Castro A; Ortiz S; Gambra E; Siedlecki D; Marcos S Opt Express; 2010 Oct; 18(21):21905-17. PubMed ID: 20941090 [TBL] [Abstract][Full Text] [Related]
8. Crystalline lens gradient refractive index distribution in the guinea pig. de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776 [TBL] [Abstract][Full Text] [Related]
9. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions. Birkenfeld J; de Castro A; Marcos S Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395 [TBL] [Abstract][Full Text] [Related]
10. Optical development in the murine eye lens of accelerated senescence-prone SAMP8 and senescence-resistant SAMR1 strains. Wang K; Pu Y; Chen L; Hoshino M; Uesugi K; Yagi N; Chen X; Usui Y; Hanashima A; Hashimoto K; Mohri S; Pierscionek BK Exp Eye Res; 2024 Apr; 241():109858. PubMed ID: 38467176 [TBL] [Abstract][Full Text] [Related]
11. Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient. Borja D; Siedlecki D; de Castro A; Uhlhorn S; Ortiz S; Arrieta E; Parel JM; Marcos S; Manns F Biomed Opt Express; 2010 Nov; 1(5):1331-1340. PubMed ID: 21258553 [TBL] [Abstract][Full Text] [Related]
12. Age-Dependent Changes in the Water Content and Optical Power of the In Vivo Mouse Lens Revealed by Multi-Parametric MRI and Optical Modeling. Pan X; Muir ER; Sellitto C; Wang K; Cheng C; Pierscionek B; Donaldson PJ; White TW Invest Ophthalmol Vis Sci; 2023 Apr; 64(4):24. PubMed ID: 37079314 [TBL] [Abstract][Full Text] [Related]
13. Volumetric rendering and metrology of spherical gradient refractive index lens imaged by angular scan optical coherence tomography system. Yao J; Thompson KP; Ma B; Ponting M; Rolland JP Opt Express; 2016 Aug; 24(17):19388-404. PubMed ID: 27557217 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data. de Castro A; Barbero S; Ortiz S; Marcos S Opt Express; 2011 Sep; 19(20):19265-79. PubMed ID: 21996868 [TBL] [Abstract][Full Text] [Related]
15. Optical coherence tomography quantifies gradient refractive index and mechanical stiffness gradient across the human lens. Kling S; Frigelli M; Aydemir ME; Tahsini V; Torres-Netto EA; Kollros L; Hafezi F Commun Med (Lond); 2024 Aug; 4(1):162. PubMed ID: 39134623 [TBL] [Abstract][Full Text] [Related]
16. Refractive index measurement of the mouse crystalline lens using optical coherence tomography. Chakraborty R; Lacy KD; Tan CC; Park HN; Pardue MT Exp Eye Res; 2014 Aug; 125():62-70. PubMed ID: 24939747 [TBL] [Abstract][Full Text] [Related]
17. Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro. Moffat BA; Atchison DA; Pope JM Vision Res; 2002 Jun; 42(13):1683-93. PubMed ID: 12079796 [TBL] [Abstract][Full Text] [Related]
18. Geometry-invariant gradient refractive index lens: analytical ray tracing. Bahrami M; Goncharov AV J Biomed Opt; 2012 May; 17(5):055001. PubMed ID: 22612122 [TBL] [Abstract][Full Text] [Related]
19. Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Uhlhorn SR; Borja D; Manns F; Parel JM Vision Res; 2008 Dec; 48(27):2732-8. PubMed ID: 18824191 [TBL] [Abstract][Full Text] [Related]
20. Analytical ray transfer matrix for the crystalline lens. Navarro R; Lockett-Ruiz V; López JL Biomed Opt Express; 2022 Nov; 13(11):5836-5848. PubMed ID: 36733757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]