These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31361022)

  • 1. Semirational design and engineering of grapevine glucosyltransferases for enhanced activity and modified product selectivity.
    Joshi R; Trinkl J; Haugeneder A; Härtl K; Franz-Oberdorf K; Giri A; Hoffmann T; Schwab W
    Glycobiology; 2019 Oct; 29(11):765-775. PubMed ID: 31361022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based enzyme engineering improves donor-substrate recognition of Arabidopsis thaliana glycosyltransferases.
    Akere A; Chen SH; Liu X; Chen Y; Dantu SC; Pandini A; Bhowmik D; Haider S
    Biochem J; 2020 Aug; 477(15):2791-2805. PubMed ID: 32657326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Functional Analysis of UGT92G6 Suggests an Evolutionary Link Between Mono- and Disaccharide Glycoside-Forming Transferases.
    Huang FC; Giri A; Daniilidis M; Sun G; Härtl K; Hoffmann T; Schwab W
    Plant Cell Physiol; 2018 Apr; 59(4):857-870. PubMed ID: 29444327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and structural characterization of a flavonoid glucoside 1,6-glucosyltransferase from Catharanthus roseus.
    Masada S; Terasaka K; Oguchi Y; Okazaki S; Mizushima T; Mizukami H
    Plant Cell Physiol; 2009 Aug; 50(8):1401-15. PubMed ID: 19561332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an in vivo glucosylation platform by coupling production to growth: Production of phenolic glucosides by a glycosyltransferase of Vitis vinifera.
    De Bruyn F; De Paepe B; Maertens J; Beauprez J; De Cocker P; Mincke S; Stevens C; De Mey M
    Biotechnol Bioeng; 2015 Aug; 112(8):1594-603. PubMed ID: 25728421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of cellobiose phosphorylase variants with broadened acceptor specificity towards anomerically substituted glucosides.
    De Groeve MR; Remmery L; Van Hoorebeke A; Stout J; Desmet T; Savvides SN; Soetaert W
    Biotechnol Bioeng; 2010 Oct; 107(3):413-20. PubMed ID: 20517986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera).
    Ono E; Homma Y; Horikawa M; Kunikane-Doi S; Imai H; Takahashi S; Kawai Y; Ishiguro M; Fukui Y; Nakayama T
    Plant Cell; 2010 Aug; 22(8):2856-71. PubMed ID: 20693356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.
    Thorsøe KS; Bak S; Olsen CE; Imberty A; Breton C; Lindberg Møller B
    Plant Physiol; 2005 Oct; 139(2):664-73. PubMed ID: 16169969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site cleft mutants of Os9BGlu31 transglucosidase modify acceptor substrate specificity and allow production of multiple kaempferol glycosides.
    Komvongsa J; Luang S; Marques JV; Phasai K; Davin LB; Lewis NG; Ketudat Cairns JR
    Biochim Biophys Acta; 2015 Jul; 1850(7):1405-14. PubMed ID: 25863286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca).
    Hall D; De Luca V
    Plant J; 2007 Feb; 49(4):579-91. PubMed ID: 17270014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a heat responsive UDP: Flavonoid glucosyltransferase gene in tea plant (Camellia sinensis).
    Su X; Wang W; Xia T; Gao L; Shen G; Pang Y
    PLoS One; 2018; 13(11):e0207212. PubMed ID: 30475819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-1.
    Xie T; Song B; Yue Y; Chao Y; Qian S
    J Biotechnol; 2014 Jan; 170():10-6. PubMed ID: 24246271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations at calcium binding site III in cyclodextrin glycosyltransferase improve β-cyclodextrin specificity.
    Ban X; Gu Z; Li C; Huang M; Cheng L; Hong Y; Li Z
    Int J Biol Macromol; 2015 May; 76():224-9. PubMed ID: 25748847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided engineering of key amino acids in UGT85B1 controlling substrate and stereo-specificity in aromatic cyanogenic glucoside biosynthesis.
    Del Giudice R; Putkaradze N; Dos Santos BM; Hansen CC; Crocoll C; Motawia MS; Fredslund F; Laursen T; Welner DH
    Plant J; 2022 Sep; 111(6):1539-1549. PubMed ID: 35819080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production.
    van der Veen BA; Uitdehaag JC; Penninga D; van Alebeek GJ; Smith LM; Dijkstra BW; Dijkhuizen L
    J Mol Biol; 2000 Mar; 296(4):1027-38. PubMed ID: 10686101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity.
    Leemhuis H; Kragh KM; Dijkstra BW; Dijkhuizen L
    J Biotechnol; 2003 Aug; 103(3):203-12. PubMed ID: 12890607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving maltodextrin specificity for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid by site-saturation engineering of subsite-3 in cyclodextrin glycosyltransferase from Paenibacillus macerans.
    Liu L; Xu Q; Han R; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Jul; 166(4):198-205. PubMed ID: 23684795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analyses for product specificity of YjiC towards α-mangostin mono-glucoside.
    Kim TS; Le TT; Nguyen HT; Cho KW; Sohng JK
    Enzyme Microb Technol; 2018 Nov; 118():76-82. PubMed ID: 30143203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of three putative glucosyltransferases from the UGT72 family in flavonol glucoside/rhamnoside biosynthesis in Lotus japonicus seeds.
    Yin Q; Shen G; Chang Z; Tang Y; Gao H; Pang Y
    J Exp Bot; 2017 Jan; 68(3):597-612. PubMed ID: 28204516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single mutation in cyclodextrin glycosyltransferase from Paenibacillus barengoltzii changes cyclodextrin and maltooligosaccharides production.
    Castillo J; Caminata Landriel S; Sánchez Costa M; Taboga OA; Berenguer J; Hidalgo A; Ferrarotti SA; Costa H
    Protein Eng Des Sel; 2018 Oct; 31(10):399-407. PubMed ID: 30690526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.