These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 31361053)

  • 1. Selective Modification of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) through Diels-Alder Cycloadditions on Dehydroalanine Residues.
    de Vries RH; Viel JH; Oudshoorn R; Kuipers OP; Roelfes G
    Chemistry; 2019 Oct; 25(55):12698-12702. PubMed ID: 31361053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu
    de Vries RH; Viel JH; Kuipers OP; Roelfes G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3946-3950. PubMed ID: 33185967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P450-Mediated Non-natural Cyclopropanation of Dehydroalanine-Containing Thiopeptides.
    Gober JG; Ghodge SV; Bogart JW; Wever WJ; Watkins RR; Brustad EM; Bowers AA
    ACS Chem Biol; 2017 Jul; 12(7):1726-1731. PubMed ID: 28535034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Aza-Michael Addition to Dehydrated Amino Acids in Natural Antimicrobial Peptides.
    Vargiu M; Xu Y; Kuipers OP; Roelfes G
    Chembiochem; 2024 Apr; 25(7):e202400043. PubMed ID: 38334959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu(II)-Catalysed β-silylation of dehydroalanine residues in peptides and proteins.
    de Vries RH; Roelfes G
    Chem Commun (Camb); 2020 Sep; 56(75):11058-11061. PubMed ID: 32812557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Water-Soluble Iridium Photocatalyst for Chemical Modification of Dehydroalanines in Peptides and Proteins.
    van Lier RCW; de Bruijn AD; Roelfes G
    Chemistry; 2021 Jan; 27(4):1430-1437. PubMed ID: 32896943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp.
    Shang Z; Winter JM; Kauffman CA; Yang I; Fenical W
    ACS Chem Biol; 2019 Mar; 14(3):415-425. PubMed ID: 30753052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Do T; Link AJ
    Biochemistry; 2023 Jan; 62(2):201-209. PubMed ID: 35006671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Prediction and Synthesis of Pyridine-Based Macrocyclic Peptide Natural Products.
    Hudson GA; Hooper AR; DiCaprio AJ; Sarlah D; Mitchell DA
    Org Lett; 2021 Jan; 23(2):253-256. PubMed ID: 32845158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational Introduction of D-Alanine into Ribosomally Synthesized Peptides by the Dehydroalanine Reductase NpnJ.
    Yang X; van der Donk WA
    J Am Chem Soc; 2015 Oct; 137(39):12426-9. PubMed ID: 26361061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature.
    Arnison PG; Bibb MJ; Bierbaum G; Bowers AA; Bugni TS; Bulaj G; Camarero JA; Campopiano DJ; Challis GL; Clardy J; Cotter PD; Craik DJ; Dawson M; Dittmann E; Donadio S; Dorrestein PC; Entian KD; Fischbach MA; Garavelli JS; Göransson U; Gruber CW; Haft DH; Hemscheidt TK; Hertweck C; Hill C; Horswill AR; Jaspars M; Kelly WL; Klinman JP; Kuipers OP; Link AJ; Liu W; Marahiel MA; Mitchell DA; Moll GN; Moore BS; Müller R; Nair SK; Nes IF; Norris GE; Olivera BM; Onaka H; Patchett ML; Piel J; Reaney MJ; Rebuffat S; Ross RP; Sahl HG; Schmidt EW; Selsted ME; Severinov K; Shen B; Sivonen K; Smith L; Stein T; Süssmuth RD; Tagg JR; Tang GL; Truman AW; Vederas JC; Walsh CT; Walton JD; Wenzel SC; Willey JM; van der Donk WA
    Nat Prod Rep; 2013 Jan; 30(1):108-60. PubMed ID: 23165928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-peptide conjugate synthesis by inverse-electron demand Diels-Alder reaction.
    Ameta S; Becker J; Jäschke A
    Org Biomol Chem; 2014 Jul; 12(26):4701-7. PubMed ID: 24871687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links.
    Agrawal P; Khater S; Gupta M; Sain N; Mohanty D
    Nucleic Acids Res; 2017 Jul; 45(W1):W80-W88. PubMed ID: 28499008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications.
    Liao R; Duan L; Lei C; Pan H; Ding Y; Zhang Q; Chen D; Shen B; Yu Y; Liu W
    Chem Biol; 2009 Feb; 16(2):141-7. PubMed ID: 19246004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides.
    Saad H; Aziz S; Gehringer M; Kramer M; Straetener J; Berscheid A; Brötz-Oesterhelt H; Gross H
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16472-16479. PubMed ID: 33991039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of chemical synthesis in developing RiPP antibiotics.
    Rowe SM; Spring DR
    Chem Soc Rev; 2021 Apr; 50(7):4245-4258. PubMed ID: 33635302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics.
    Zheng Q; Fang H; Liu W
    Org Biomol Chem; 2017 Apr; 15(16):3376-3390. PubMed ID: 28358161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.