These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 31361114)
1. Realizing an Applicable "Solid → Solid" Cathode Process via a Transplantable Solid Electrolyte Interface for Lithium-Sulfur Batteries. Chen X; Yuan L; Li Z; Chen S; Ji H; Qin Y; Wu L; Shen Y; Wang L; Hu J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29830-29837. PubMed ID: 31361114 [TBL] [Abstract][Full Text] [Related]
2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
3. A Solid-Phase Conversion Sulfur Cathode with Full Capacity Utilization and Superior Cycle Stability for Lithium-Sulfur Batteries. Wu X; Zhang Q; Tang G; Cao Y; Yang H; Li H; Ai X Small; 2022 Mar; 18(10):e2106144. PubMed ID: 35038220 [TBL] [Abstract][Full Text] [Related]
4. Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode. Guo J; Du X; Zhang X; Zhang F; Liu J Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436543 [TBL] [Abstract][Full Text] [Related]
5. Unraveling the Impact of Ether and Carbonate Electrolytes on the Solid-Electrolyte Interface and the Electrochemical Performances of ZnSe@C Core-Shell Composites as Anodes of Lithium-Ion Batteries. Ma D; Zhu Q; Li X; Gao H; Wang X; Kang X; Tian Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):8009-8017. PubMed ID: 30702859 [TBL] [Abstract][Full Text] [Related]
6. Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li Umeshbabu E; Zheng B; Zhu J; Wang H; Li Y; Yang Y ACS Appl Mater Interfaces; 2019 May; 11(20):18436-18447. PubMed ID: 31033273 [TBL] [Abstract][Full Text] [Related]
7. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries. Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498 [TBL] [Abstract][Full Text] [Related]
8. Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface? Fan B; Xu Y; Ma R; Luo Z; Wang F; Zhang X; Ma H; Fan P; Xue B; Han W ACS Appl Mater Interfaces; 2020 Nov; 12(47):52845-52856. PubMed ID: 33170619 [TBL] [Abstract][Full Text] [Related]
9. An Ionic Liquid Electrolyte Additive for High-Performance Lithium-Sulfur Batteries. Guan Z; Bai L; Du B Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068248 [TBL] [Abstract][Full Text] [Related]
10. Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na-S Batteries. Liu H; Lai WH; Yang Q; Lei Y; Wu C; Wang N; Wang YX; Chou SL; Liu HK; Dou SX Nanomicro Lett; 2021 May; 13(1):121. PubMed ID: 34138346 [TBL] [Abstract][Full Text] [Related]
11. High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode-Electrolyte Interface. Li CC; Wang WP; Feng XX; Wang YH; Zhang Y; Zhang J; Zhang L; Zheng JC; Luo Y; Chen Z; Xin S; Guo YG ACS Appl Mater Interfaces; 2023 Apr; 15(15):19066-19074. PubMed ID: 37036933 [TBL] [Abstract][Full Text] [Related]
12. Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium-Sulfur Batteries. Hou LP; Li Y; Li Z; Zhang QK; Li BQ; Bi CX; Chen ZX; Su LL; Huang JQ; Wen R; Zhang XQ; Zhang Q Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202305466. PubMed ID: 37377179 [TBL] [Abstract][Full Text] [Related]
13. Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive. Liu D; Li Z; Li X; Chen X; Li Z; Yuan L; Huang Y ACS Appl Mater Interfaces; 2022 Feb; 14(5):6658-6666. PubMed ID: 35076203 [TBL] [Abstract][Full Text] [Related]
14. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861 [TBL] [Abstract][Full Text] [Related]
15. Strong Interfacial Adhesion between the Li Zhou L; Tufail MK; Ahmad N; Song T; Chen R; Yang W ACS Appl Mater Interfaces; 2021 Jun; 13(24):28270-28280. PubMed ID: 34121381 [TBL] [Abstract][Full Text] [Related]
16. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. Hou G; Ma X; Sun Q; Ai Q; Xu X; Chen L; Li D; Chen J; Zhong H; Li Y; Xu Z; Si P; Feng J; Zhang L; Ding F; Ci L ACS Appl Mater Interfaces; 2018 Jun; 10(22):18610-18618. PubMed ID: 29758163 [TBL] [Abstract][Full Text] [Related]
17. Boosting the "Solid-Liquid-Solid" Conversion Reaction via Bifunctional Carbonate-Based Electrolyte for Ultra-long-life Potassium-Sulfur Batteries. Ye S; Yao N; Chen X; Ma M; Wang L; Chen Z; Yao Y; Zhang Q; Yu Y Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202307728. PubMed ID: 37707498 [TBL] [Abstract][Full Text] [Related]
18. Carbon Disulfide Cosolvent Electrolytes for High-Performance Lithium Sulfur Batteries. Gu S; Wen Z; Qian R; Jin J; Wang Q; Wu M; Zhuo S ACS Appl Mater Interfaces; 2016 Dec; 8(50):34379-34386. PubMed ID: 27998100 [TBL] [Abstract][Full Text] [Related]
19. A New Type of Electrolyte System To Suppress Polysulfide Dissolution for Lithium-Sulfur Battery. Yang T; Qian T; Liu J; Xu N; Li Y; Grundish N; Yan C; Goodenough JB ACS Nano; 2019 Aug; 13(8):9067-9073. PubMed ID: 31339690 [TBL] [Abstract][Full Text] [Related]
20. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Li X; Banis M; Lushington A; Yang X; Sun Q; Zhao Y; Liu C; Li Q; Wang B; Xiao W; Wang C; Li M; Liang J; Li R; Hu Y; Goncharova L; Zhang H; Sham TK; Sun X Nat Commun; 2018 Oct; 9(1):4509. PubMed ID: 30375387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]