BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1283 related articles for article (PubMed ID: 31361123)

  • 41. Introduction: Novel insights into TB research and drug discovery.
    Grüber G
    Prog Biophys Mol Biol; 2020 May; 152():2-5. PubMed ID: 32087187
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TB drug development: immunology at the table.
    Nathan C; Barry CE
    Immunol Rev; 2015 Mar; 264(1):308-18. PubMed ID: 25703568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Host-pathogen systems for early drug discovery against tuberculosis.
    Trofimov V; Costa-Gouveia J; Hoffmann E; Brodin P
    Curr Opin Microbiol; 2017 Oct; 39():143-151. PubMed ID: 29179041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.
    Uddin R; Zahra NU; Azam SS
    Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immunometabolism during Mycobacterium tuberculosis Infection.
    Howard NC; Khader SA
    Trends Microbiol; 2020 Oct; 28(10):832-850. PubMed ID: 32409147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.
    Islam MM; Hameed HMA; Mugweru J; Chhotaray C; Wang C; Tan Y; Liu J; Li X; Tan S; Ojima I; Yew WW; Nuermberger E; Lamichhane G; Zhang T
    J Genet Genomics; 2017 Jan; 44(1):21-37. PubMed ID: 28117224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Colworth prize lecture 2016: exploiting new biological targets from a whole-cell phenotypic screening campaign for TB drug discovery.
    Moynihan PJ; Besra GS
    Microbiology (Reading); 2017 Oct; 163(10):1385-1388. PubMed ID: 28893361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Managing TB in the 21st century: existing and novel drug therapies.
    Guy ES; Mallampalli A
    Ther Adv Respir Dis; 2008 Dec; 2(6):401-8. PubMed ID: 19124385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting Energy Metabolism in
    Bald D; Villellas C; Lu P; Koul A
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Key targets and relevant inhibitors for the drug discovery of tuberculosis.
    Xiong X; Xu Z; Yang Z; Liu Y; Wang D; Dong M; Parker EJ; Zhu W
    Curr Drug Targets; 2013 Jun; 14(6):676-99. PubMed ID: 23547780
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets.
    Vashisht R; Bhat AG; Kushwaha S; Bhardwaj A; ; Brahmachari SK
    J Transl Med; 2014 Oct; 12():263. PubMed ID: 25304862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development.
    Poce G; Cocozza M; Consalvi S; Biava M
    Eur J Med Chem; 2014 Oct; 86():335-51. PubMed ID: 25173852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update.
    Njire M; Tan Y; Mugweru J; Wang C; Guo J; Yew W; Tan S; Zhang T
    Adv Med Sci; 2016 Mar; 61(1):63-71. PubMed ID: 26521205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving the tuberculosis drug development pipeline.
    Evangelopoulos D; McHugh TD
    Chem Biol Drug Des; 2015 Nov; 86(5):951-60. PubMed ID: 25772393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis.
    Swaminathan S; Sundaramurthi JC; Palaniappan AN; Narayanan S
    Tuberculosis (Edinb); 2016 Dec; 101():31-40. PubMed ID: 27865394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme.
    Mittal P; Sinha R; Kumar A; Singh P; Ngasainao MR; Singh A; Singh IK
    Curr Top Med Chem; 2020; 20(5):390-408. PubMed ID: 31924156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis.
    John SF; Aniemeke E; Ha NP; Chong CR; Gu P; Zhou J; Zhang Y; Graviss EA; Liu JO; Olaleye OA
    Tuberculosis (Edinb); 2016 Dec; 101S():S73-S77. PubMed ID: 27856197
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of HIF-1α signaling in Mycobacterium tuberculosis infection: New targets for anti-TB therapeutics?
    Li C; Wang J; Xu JF; Pi J; Zheng B
    Biochem Biophys Res Commun; 2024 Jun; 711():149920. PubMed ID: 38615574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of model systems to study adaptive responses of Mycobacterium tuberculosis during infection and disease.
    Gordhan BG; Peters J; Kana BD
    Adv Appl Microbiol; 2019; 108():115-161. PubMed ID: 31495404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 65.