These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31361218)

  • 1. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.
    Zhu X; Clarke R; Puppala AK; Chittori S; Merk A; Merrill BJ; Simonović M; Subramaniam S
    Nat Struct Mol Biol; 2019 Aug; 26(8):679-685. PubMed ID: 31285607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and dynamic insights into the HNH nuclease of divergent Cas9 species.
    Belato HB; D'Ordine AM; Nierzwicki L; Arantes PR; Jogl G; Palermo G; Lisi GP
    J Struct Biol; 2022 Mar; 214(1):107814. PubMed ID: 34871741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
    Sun W; Yang J; Cheng Z; Amrani N; Liu C; Wang K; Ibraheim R; Edraki A; Huang X; Wang M; Wang J; Liu L; Sheng G; Yang Y; Lou J; Sontheimer EJ; Wang Y
    Mol Cell; 2019 Dec; 76(6):938-952.e5. PubMed ID: 31668930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.
    Maghsoud Y; Jayasinghe-Arachchige VM; Kumari P; Cisneros GA; Liu J
    J Chem Inf Model; 2023 Nov; 63(21):6834-6850. PubMed ID: 37877218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring alternative catalytic mechanisms of the Cas9 HNH domain.
    Zhao LN; Mondal D; Warshel A
    Proteins; 2020 Feb; 88(2):260-264. PubMed ID: 31390092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R-loop formation and conformational activation mechanisms of Cas9.
    Pacesa M; Loeff L; Querques I; Muckenfuss LM; Sawicka M; Jinek M
    Nature; 2022 Sep; 609(7925):191-196. PubMed ID: 36002571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Dynamics of
    Zhdanova PV; Chernonosov AA; Prokhorova DV; Stepanov GA; Kanazhevskaya LY; Koval VV
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Roles of Two Histidine Residues in
    Furuhata Y; Kato Y
    Biochemistry; 2021 Jan; 60(3):194-200. PubMed ID: 33428390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Dynamics of Cas9 HNH Domain Catalytic State.
    Zuo Z; Liu J
    Sci Rep; 2017 Dec; 7(1):17271. PubMed ID: 29222528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time observation of Cas9 postcatalytic domain motions.
    Wang Y; Mallon J; Wang H; Singh D; Hyun Jo M; Hua B; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease.
    Wang J; Maschietto F; Qiu T; Arantes PR; Skeens E; Palermo G; Lisi GP; Batista VS
    Biophys J; 2023 Dec; 122(24):4635-4644. PubMed ID: 37936350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
    Huai C; Li G; Yao R; Zhang Y; Cao M; Kong L; Jia C; Yuan H; Chen H; Lu D; Huang Q
    Nat Commun; 2017 Nov; 8(1):1375. PubMed ID: 29123204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex.
    Halat M; Klimek-Chodacka M; Orleanska J; Baranska M; Baranski R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805827
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Yourik P; Fuchs RT; Mabuchi M; Curcuru JL; Robb GB
    RNA; 2019 Jan; 25(1):35-44. PubMed ID: 30348755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational control of DNA target cleavage by CRISPR-Cas9.
    Sternberg SH; LaFrance B; Kaplan M; Doudna JA
    Nature; 2015 Nov; 527(7576):110-3. PubMed ID: 26524520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.