These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3136124)

  • 1. Muscle glucose transport: interactions of in vitro contractions, insulin, and exercise.
    Constable SH; Favier RJ; Cartee GD; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Jun; 64(6):2329-32. PubMed ID: 3136124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli.
    Cartee GD; Holloszy JO
    Am J Physiol; 1990 Feb; 258(2 Pt 1):E390-3. PubMed ID: 2305881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transport into rat skeletal muscle: interaction between exercise and insulin.
    Wallberg-Henriksson H; Constable SH; Young DA; Holloszy JO
    J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise.
    Cartee GD; Young DA; Sleeper MD; Zierath J; Wallberg-Henriksson H; Holloszy JO
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E494-9. PubMed ID: 2650561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of glucose transport in diabetic muscle: responses to contraction and insulin.
    Wallberg-Henriksson H; Holloszy JO
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C233-7. PubMed ID: 3898862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle.
    Henriksen EJ; Holloszy JO
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C648-53. PubMed ID: 2185640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium.
    Henriksen EJ; Rodnick KJ; Holloszy JO
    J Biol Chem; 1989 Dec; 264(36):21536-43. PubMed ID: 2600081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated exercise regulates glucose transport capacity in skeletal muscle.
    Wallberg-Henriksson H
    Acta Physiol Scand; 1986 May; 127(1):39-43. PubMed ID: 3524115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose.
    Gulve EA; Cartee GD; Zierath JR; Corpus VM; Holloszy JO
    Am J Physiol; 1990 Nov; 259(5 Pt 1):E685-91. PubMed ID: 2240207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased permeability to sugar following muscle contraction. Inhibitors of protein synthesis prevent reversal of the increase in 3-methylglucose transport rate.
    Garthwaite SM; Holloszy JO
    J Biol Chem; 1982 May; 257(9):5008-12. PubMed ID: 7040390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-induced loss of exercise-mediated 3-0-methyl glucose uptake by isolated rat soleus and epitrochlearis muscles.
    Cleland PJ; Rattigan S; Clark MG
    Horm Metab Res; 1990 Feb; 22(2):121-2. PubMed ID: 2323729
    [No Abstract]   [Full Text] [Related]  

  • 13. Reversibility of decreased insulin-stimulated glucose transport capacity in diabetic muscle with in vitro incubation. Insulin is not required.
    Wallberg-Henriksson H; Zetan N; Henriksson J
    J Biol Chem; 1987 Jun; 262(16):7665-71. PubMed ID: 3294836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents.
    Tabata I; Schluter J; Gulve EA; Holloszy JO
    Diabetes; 1994 Jul; 43(7):903-7. PubMed ID: 8013755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin regulation of sugar transport in giant muscle fibres of the barnacle.
    Baker PF; Carruthers A
    J Physiol; 1983 Mar; 336():397-431. PubMed ID: 6308227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bradykinin does not mediate activation of glucose transport by muscle contraction.
    Constable SH; Favier RJ; Uhl J; Holloszy JO
    J Appl Physiol (1985); 1986 Sep; 61(3):881-4. PubMed ID: 2428801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle.
    Ren JM; Semenkovich CF; Gulve EA; Gao J; Holloszy JO
    J Biol Chem; 1994 May; 269(20):14396-401. PubMed ID: 8182045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of glucose transport in rat muscle: effects of insulin and contractions.
    Ploug T; Galbo H; Vinten J; Jørgensen M; Richter EA
    Am J Physiol; 1987 Jul; 253(1 Pt 1):E12-20. PubMed ID: 3300362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport: locus of muscle insulin resistance in obese Zucker rats.
    Sherman WM; Katz AL; Cutler CL; Withers RT; Ivy JL
    Am J Physiol; 1988 Sep; 255(3 Pt 1):E374-82. PubMed ID: 3138916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of glucose transport in skeletal muscle by hypoxia.
    Cartee GD; Douen AG; Ramlal T; Klip A; Holloszy JO
    J Appl Physiol (1985); 1991 Apr; 70(4):1593-600. PubMed ID: 2055841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.