These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31361300)

  • 1. Development of a global infectious disease activity database using natural language processing, machine learning, and human expertise.
    Feldman J; Thomas-Bachli A; Forsyth J; Patel ZH; Khan K
    J Am Med Inform Assoc; 2019 Nov; 26(11):1355-1359. PubMed ID: 31361300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Classification of Online Sources for Infectious Disease Occurrences Using Machine-Learning-Based Natural Language Processing Approaches.
    Kim M; Chae K; Lee S; Jang HJ; Kim S
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33348764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics.
    Torii M; Yin L; Nguyen T; Mazumdar CT; Liu H; Hartley DM; Nelson NP
    Int J Med Inform; 2011 Jan; 80(1):56-66. PubMed ID: 21134784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System for infectious disease information sharing and analysis: design and evaluation.
    Hu PJ; Zeng D; Chen H; Larson C; Chang W; Tseng C; Ma J
    IEEE Trans Inf Technol Biomed; 2007 Jul; 11(4):483-92. PubMed ID: 17674631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information extraction for enhanced access to disease outbreak reports.
    Grishman R; Huttunen S; Yangarber R
    J Biomed Inform; 2002 Aug; 35(4):236-46. PubMed ID: 12755518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports.
    Freifeld CC; Mandl KD; Reis BY; Brownstein JS
    J Am Med Inform Assoc; 2008; 15(2):150-7. PubMed ID: 18096908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of unstructured event-based reports for global infectious disease surveillance.
    Keller M; Blench M; Tolentino H; Freifeld CC; Mandl KD; Mawudeku A; Eysenbach G; Brownstein JS
    Emerg Infect Dis; 2009 May; 15(5):689-95. PubMed ID: 19402953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sharing Data for Global Infectious Disease Surveillance and Outbreak Detection.
    Aarestrup FM; Koopmans MG
    Trends Microbiol; 2016 Apr; 24(4):241-245. PubMed ID: 26875619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methodology to enhance spatial understanding of disease outbreak events reported in news articles.
    Chanlekha H; Collier N
    Int J Med Inform; 2010 Apr; 79(4):284-96. PubMed ID: 20153972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infectious disease outbreak prediction using media articles with machine learning models.
    Kim J; Ahn I
    Sci Rep; 2021 Feb; 11(1):4413. PubMed ID: 33627706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EventEpi-A natural language processing framework for event-based surveillance.
    Abbood A; Ullrich A; Busche R; Ghozzi S
    PLoS Comput Biol; 2020 Nov; 16(11):e1008277. PubMed ID: 33216746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the European Union Disease Surveillance Networks' websites.
    Lenglet A; Hernandez Pezzi G
    Euro Surveill; 2006; 11(5):119-22. PubMed ID: 16757848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan.
    Ali MA; Ahsan Z; Amin M; Latif S; Ayyaz A; Ayyaz MN
    Public Health; 2016 May; 134():72-85. PubMed ID: 26880489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.
    Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G
    J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Identification of Information Quality Metrics in Health News Stories.
    Al-Jefri M; Evans R; Lee J; Ghezzi P
    Front Public Health; 2020; 8():515347. PubMed ID: 33392124
    [No Abstract]   [Full Text] [Related]  

  • 17. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SmiNet-2: Description of an internet-based surveillance system for communicable diseases in Sweden.
    Rolfhamre P; Jansson A; Arneborn M; Ekdahl K
    Euro Surveill; 2006; 11(5):103-7. PubMed ID: 16757847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Criteria2Query: a natural language interface to clinical databases for cohort definition.
    Yuan C; Ryan PB; Ta C; Guo Y; Li Z; Hardin J; Makadia R; Jin P; Shang N; Kang T; Weng C
    J Am Med Inform Assoc; 2019 Apr; 26(4):294-305. PubMed ID: 30753493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosurveillance, classification, and semantic health technologies.
    Chute CG
    J Am Med Inform Assoc; 2008; 15(2):172-3. PubMed ID: 18396506
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.