BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31361300)

  • 1. Development of a global infectious disease activity database using natural language processing, machine learning, and human expertise.
    Feldman J; Thomas-Bachli A; Forsyth J; Patel ZH; Khan K
    J Am Med Inform Assoc; 2019 Nov; 26(11):1355-1359. PubMed ID: 31361300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Classification of Online Sources for Infectious Disease Occurrences Using Machine-Learning-Based Natural Language Processing Approaches.
    Kim M; Chae K; Lee S; Jang HJ; Kim S
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33348764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics.
    Torii M; Yin L; Nguyen T; Mazumdar CT; Liu H; Hartley DM; Nelson NP
    Int J Med Inform; 2011 Jan; 80(1):56-66. PubMed ID: 21134784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System for infectious disease information sharing and analysis: design and evaluation.
    Hu PJ; Zeng D; Chen H; Larson C; Chang W; Tseng C; Ma J
    IEEE Trans Inf Technol Biomed; 2007 Jul; 11(4):483-92. PubMed ID: 17674631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information extraction for enhanced access to disease outbreak reports.
    Grishman R; Huttunen S; Yangarber R
    J Biomed Inform; 2002 Aug; 35(4):236-46. PubMed ID: 12755518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports.
    Freifeld CC; Mandl KD; Reis BY; Brownstein JS
    J Am Med Inform Assoc; 2008; 15(2):150-7. PubMed ID: 18096908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of unstructured event-based reports for global infectious disease surveillance.
    Keller M; Blench M; Tolentino H; Freifeld CC; Mandl KD; Mawudeku A; Eysenbach G; Brownstein JS
    Emerg Infect Dis; 2009 May; 15(5):689-95. PubMed ID: 19402953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sharing Data for Global Infectious Disease Surveillance and Outbreak Detection.
    Aarestrup FM; Koopmans MG
    Trends Microbiol; 2016 Apr; 24(4):241-245. PubMed ID: 26875619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NLPReViz: an interactive tool for natural language processing on clinical text.
    Trivedi G; Pham P; Chapman WW; Hwa R; Wiebe J; Hochheiser H
    J Am Med Inform Assoc; 2018 Jan; 25(1):81-87. PubMed ID: 29016825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criteria2Query: a natural language interface to clinical databases for cohort definition.
    Yuan C; Ryan PB; Ta C; Guo Y; Li Z; Hardin J; Makadia R; Jin P; Shang N; Kang T; Weng C
    J Am Med Inform Assoc; 2019 Apr; 26(4):294-305. PubMed ID: 30753493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology to enhance spatial understanding of disease outbreak events reported in news articles.
    Chanlekha H; Collier N
    Int J Med Inform; 2010 Apr; 79(4):284-96. PubMed ID: 20153972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infectious disease outbreak prediction using media articles with machine learning models.
    Kim J; Ahn I
    Sci Rep; 2021 Feb; 11(1):4413. PubMed ID: 33627706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EventEpi-A natural language processing framework for event-based surveillance.
    Abbood A; Ullrich A; Busche R; Ghozzi S
    PLoS Comput Biol; 2020 Nov; 16(11):e1008277. PubMed ID: 33216746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the European Union Disease Surveillance Networks' websites.
    Lenglet A; Hernandez Pezzi G
    Euro Surveill; 2006; 11(5):119-22. PubMed ID: 16757848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan.
    Ali MA; Ahsan Z; Amin M; Latif S; Ayyaz A; Ayyaz MN
    Public Health; 2016 May; 134():72-85. PubMed ID: 26880489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning.
    Osborne JD; Wyatt M; Westfall AO; Willig J; Bethard S; Gordon G
    J Am Med Inform Assoc; 2016 Nov; 23(6):1077-1084. PubMed ID: 27026618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Identification of Information Quality Metrics in Health News Stories.
    Al-Jefri M; Evans R; Lee J; Ghezzi P
    Front Public Health; 2020; 8():515347. PubMed ID: 33392124
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SmiNet-2: Description of an internet-based surveillance system for communicable diseases in Sweden.
    Rolfhamre P; Jansson A; Arneborn M; Ekdahl K
    Euro Surveill; 2006; 11(5):103-7. PubMed ID: 16757847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.