These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3136135)

  • 1. Effects of acetazolamide on cerebrocortical NADH and blood volume.
    Bickler PE; Litt L; Severinghaus JW
    J Appl Physiol (1985); 1988 Jul; 65(1):428-33. PubMed ID: 3136135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acetazolamide on cerebral acid-base balance.
    Bickler PE; Litt L; Banville DL; Severinghaus JW
    J Appl Physiol (1985); 1988 Jul; 65(1):422-7. PubMed ID: 3136134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation.
    Rampil IJ; Litt L; Mayevsky A
    J Clin Monit; 1992 Jul; 8(3):216-25. PubMed ID: 1494928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1982; 2(2):209-19. PubMed ID: 7076733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hypoxia and hypocapnia on brain redox balance in ducks.
    Bickler PE; Koh SO; Severinghaus JW
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R132-5. PubMed ID: 2502033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):161-9. PubMed ID: 6841463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracranial pressure and brain redox balance in rabbits.
    Bissonnette B; Bickler PE; Gregory GA; Severinghaus JW
    Can J Anaesth; 1991 Jul; 38(5):654-9. PubMed ID: 1934221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade of acetazolamide-induced vasodilatation.
    Taki K; Kato H; Endo S; Inada K; Totsuka K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):240-8. PubMed ID: 10509735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetazolamide-induced increase in blood flow to rabbit organs is confirmed using colored microspheres.
    Taki K; Hirahara K; Tomita S; Totoki T
    Heart Vessels; 1998; 13(2):63-7. PubMed ID: 9987639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient metabolic and vascular volume changes following rapid blood pressure alterations which precede the autoregulatory vasodilation of cerebrocortical vessels.
    Kovách AG; Dóra E; Hamar J; Eke A; Szabó L
    Adv Exp Med Biol; 1977 Jul 4-7; 94():705-11. PubMed ID: 207169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential acetazolamide-induced vasodilation based on vessel size and organ: confirmation of peripheral vasodilation with use of colored microspheres.
    Taki K; Oogushi K; Hirahara K; Gai X; Nagashima F; Tozuka K
    Angiology; 2001 Jul; 52(7):483-8. PubMed ID: 11515988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia.
    Dóra E
    J Neurochem; 1984 Jan; 42(1):101-8. PubMed ID: 6689684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ arterial and brain tissue PCO2 responses to acetazolamide in cats.
    Kohshi K; Konda N; Kinoshita Y; Tsuru E; Yokota A
    J Appl Physiol (1985); 1994 May; 76(5):2199-203. PubMed ID: 8063687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state.
    Dóra E
    J Neurochem; 1983 Dec; 41(6):1774-7. PubMed ID: 6644311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbonic anhydrase inhibition and cerebral cortical oxygenation in the rat.
    LaManna JC; McCracken KA
    Adv Exp Med Biol; 1990; 277():335-43. PubMed ID: 2096639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism.
    Dóra E
    Acta Physiol Hung; 1985; 66(2):199-211. PubMed ID: 4050463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of proxyphylline and benzopyrones on the cerebrocortical NAD/NADH redox state and reflectance in haemorrhagic shock.
    Dora E; Kovách AG
    Arzneimittelforschung; 1978; 28(5):787-90. PubMed ID: 219868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of intralaryngeal carbon dioxide and acetazolamide on the laryngeal chemoreflex.
    Heman-Ackah YD; Goding GS
    Ann Otol Rhinol Laryngol; 2000 Oct; 109(10 Pt 1):921-8. PubMed ID: 11051432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of arterial hypoxia on the cerebrocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration.
    Dóra E; Zeuthen T; Silver IA; Chance B; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(4):319-31. PubMed ID: 232966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of brain activation-induced cortical NAD/NADH responses in vivo.
    Dóra E; Gyulai L; Kovách AG
    Brain Res; 1984 May; 299(1):61-72. PubMed ID: 6326966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.