These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 31361366)
21. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors. Yuan J; Wong OL; Lo GG; Chan HH; Wong TT; Cheung PS Quant Imaging Med Surg; 2016 Aug; 6(4):418-429. PubMed ID: 27709078 [TBL] [Abstract][Full Text] [Related]
22. A comparative study of methods for determining Intravoxel incoherent motion parameters in cervix cancer. Wang X; Song J; Zhou S; Lu Y; Lin W; Koh TS; Hou Z; Yan Z Cancer Imaging; 2021 Jan; 21(1):12. PubMed ID: 33446273 [TBL] [Abstract][Full Text] [Related]
23. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Partially Nephrectomized Kidneys. Schneider MJ; Dietrich O; Ingrisch M; Helck A; Winter KS; Reiser MF; Staehler M; Casuscelli J; Notohamiprodjo M Invest Radiol; 2016 May; 51(5):323-30. PubMed ID: 26713966 [TBL] [Abstract][Full Text] [Related]
24. Tri- and bi-exponential diffusion analyses of the kidney: effect of respiratory-controlled acquisition on diffusion parameters. Makino Y; Ohno N; Miyati T; Hori N; Matsuura Y; Kobayashi S; Gabata T Radiol Phys Technol; 2023 Dec; 16(4):478-487. PubMed ID: 37523080 [TBL] [Abstract][Full Text] [Related]
25. Stroke assessment with intravoxel incoherent motion diffusion-weighted MRI. Suo S; Cao M; Zhu W; Li L; Li J; Shen F; Zu J; Zhou Z; Zhuang Z; Qu J; Chen Z; Xu J NMR Biomed; 2016 Mar; 29(3):320-8. PubMed ID: 26748572 [TBL] [Abstract][Full Text] [Related]
26. Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol. Gurney-Champion OJ; Rauh SS; Harrington K; Oelfke U; Laun FB; Wetscherek A Magn Reson Med; 2020 Mar; 83(3):1003-1015. PubMed ID: 31566262 [TBL] [Abstract][Full Text] [Related]
28. Initial study of biexponential model of intravoxel incoherent motion magnetic resonance imaging in evaluation of the liver fibrosis. Chen C; Wang B; Shi D; Fu F; Zhang J; Wen Z; Zhu S; Xu J; Lin Q; Li J; Dou S Chin Med J (Engl); 2014; 127(17):3082-7. PubMed ID: 25189949 [TBL] [Abstract][Full Text] [Related]
29. Multiparametric MRI Evaluation of Liposomal Prostaglandins E1 Intervention on Hepatic Warm Ischemia-Reperfusion Injury in Rabbits. Li J; Jiang J; Chu Z; Zhang Y; Cai W; Zhu J; Grimm R; Ji Q J Magn Reson Imaging; 2020 Jul; 52(1):217-228. PubMed ID: 31829483 [TBL] [Abstract][Full Text] [Related]
30. Intravoxel incoherent motion MRI for liver fibrosis assessment: a pilot study. Chung SR; Lee SS; Kim N; Yu ES; Kim E; Kühn B; Kim IS Acta Radiol; 2015 Dec; 56(12):1428-36. PubMed ID: 25414372 [TBL] [Abstract][Full Text] [Related]
31. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Peng J; Zheng J; Yang C; Wang R; Zhou Y; Tao YY; Gong XQ; Wang WC; Zhang XM; Yang L Sci Rep; 2020 May; 10(1):7717. PubMed ID: 32382050 [TBL] [Abstract][Full Text] [Related]
32. Is there evidence for more than two diffusion components in abdominal organs? - A magnetic resonance imaging study in healthy volunteers. Wurnig MC; Germann M; Boss A NMR Biomed; 2018 Jan; 31(1):. PubMed ID: 29105178 [TBL] [Abstract][Full Text] [Related]
33. Assessment of renal dysfunction with diffusion-weighted imaging: comparing intra-voxel incoherent motion (IVIM) with a mono-exponential model. Ding J; Chen J; Jiang Z; Zhou H; Di J; Xing W Acta Radiol; 2016 Apr; 57(4):507-12. PubMed ID: 26189976 [TBL] [Abstract][Full Text] [Related]
34. Optimization of b-value schemes for estimation of the diffusion coefficient and the perfusion fraction with segmented intravoxel incoherent motion model fitting. Jalnefjord O; Montelius M; Starck G; Ljungberg M Magn Reson Med; 2019 Oct; 82(4):1541-1552. PubMed ID: 31148264 [TBL] [Abstract][Full Text] [Related]
35. Mono, bi- and tri-exponential diffusion MRI modelling for renal solid masses and comparison with histopathological findings. van Baalen S; Froeling M; Asselman M; Klazen C; Jeltes C; van Dijk L; Vroling B; Dik P; Ten Haken B Cancer Imaging; 2018 Nov; 18(1):44. PubMed ID: 30477587 [TBL] [Abstract][Full Text] [Related]
36. Assessment of Liver Perfusion by IntraVoxel Incoherent Motion (IVIM) Magnetic Resonance-Diffusion-Weighted Imaging: Correlation With Phase-Contrast Portal Venous Flow Measurements. Regini F; Colagrande S; Mazzoni LN; Busoni S; Matteuzzi B; Santini P; Wyttenbach R J Comput Assist Tomogr; 2015; 39(3):365-72. PubMed ID: 25700227 [TBL] [Abstract][Full Text] [Related]
37. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: In silico and during pharmacological renal perfusion modulation. van der Bel R; Gurney-Champion OJ; Froeling M; Stroes ESG; Nederveen AJ; Krediet CTP Eur J Radiol; 2017 Jun; 91():168-174. PubMed ID: 28629565 [TBL] [Abstract][Full Text] [Related]
38. Intravoxel incoherent motion diffusion-weighted imaging in head and neck squamous cell carcinoma: assessment of perfusion-related parameters compared to dynamic contrast-enhanced MRI. Fujima N; Yoshida D; Sakashita T; Homma A; Tsukahara A; Tha KK; Kudo K; Shirato H Magn Reson Imaging; 2014 Dec; 32(10):1206-13. PubMed ID: 25131628 [TBL] [Abstract][Full Text] [Related]
39. Diffusional kurtosis imaging (DKI) incorporation into an intravoxel incoherent motion (IVIM) MR model to measure cerebral hypoperfusion induced by hyperventilation challenge in healthy subjects. Pavilla A; Gambarota G; Arrigo A; Mejdoubi M; Duvauferrier R; Saint-Jalmes H MAGMA; 2017 Dec; 30(6):545-554. PubMed ID: 28608327 [TBL] [Abstract][Full Text] [Related]
40. Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Barbieri S; Gurney-Champion OJ; Klaassen R; Thoeny HC Magn Reson Med; 2020 Jan; 83(1):312-321. PubMed ID: 31389081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]