These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 3136145)
1. Viability and metabolic capability are maintained by Escherichia coli, Pseudomonas aeruginosa, and Streptococcus lactis at very low adenylate energy charge. Barrette WC; Hannum DM; Wheeler WD; Hurst JK J Bacteriol; 1988 Aug; 170(8):3655-9. PubMed ID: 3136145 [TBL] [Abstract][Full Text] [Related]
2. General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production. Barrette WC; Hannum DM; Wheeler WD; Hurst JK Biochemistry; 1989 Nov; 28(23):9172-8. PubMed ID: 2557918 [TBL] [Abstract][Full Text] [Related]
3. Lethal effect of carbonyl cyanide m-chlorophenylhydrazone on Escherichia coli and a halotolerant Brevibacterium species. Nagata S Microbios; 1995; 81(327):73-83. PubMed ID: 7476556 [TBL] [Abstract][Full Text] [Related]
4. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli. Anraku Y; Kin E; Tanaka Y J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599 [TBL] [Abstract][Full Text] [Related]
5. Effect of carbonyl cyanide m-chlorophenylhydrazone on respiration and respiration-dependent phosphorylation in Escherichia coli. Cavari BZ; Avi-Dor Y Biochem J; 1967 May; 103(2):601-8. PubMed ID: 4962086 [TBL] [Abstract][Full Text] [Related]
6. Metabolic changes in Crithidia fasciculata accompanying physiological adaptation to growth in the presence of carbonyl cyanide m-chlorophenylhydrazone. Kutzman RS; Roberts JF Comp Biochem Physiol B; 1979; 62(4):449-53. PubMed ID: 45556 [TBL] [Abstract][Full Text] [Related]
7. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Klebensberger J; Rui O; Fritz E; Schink B; Philipp B Arch Microbiol; 2006 Jun; 185(6):417-27. PubMed ID: 16775748 [TBL] [Abstract][Full Text] [Related]
8. Maintenance of a neutral cytoplasmic pH is not obligatory for growth of Escherichia coli and Streptococcus faecalis at an alkaline pH. Mugikura S; Nishikawa M; Igarashi K; Kobayashi H J Biochem; 1990 Jul; 108(1):86-91. PubMed ID: 2121723 [TBL] [Abstract][Full Text] [Related]
9. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. Gigliobianco T; Lakaye B; Wins P; El Moualij B; Zorzi W; Bettendorff L BMC Microbiol; 2010 May; 10():148. PubMed ID: 20492686 [TBL] [Abstract][Full Text] [Related]
10. Functional capacities and the adenylate energy charge in Escherichia coli under conditions of nutritional stress. Walker-Simmons M; Atkinson DE J Bacteriol; 1977 May; 130(2):676-83. PubMed ID: 122511 [TBL] [Abstract][Full Text] [Related]
11. Effect of protonophore on growth of Escherichia coli. Nakano S; Onoda T J Basic Microbiol; 1989; 29(3):163-9. PubMed ID: 2664119 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient. Peterkofsky A; Gazdar C Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1099-103. PubMed ID: 108676 [TBL] [Abstract][Full Text] [Related]
13. Effect of carbonyl cyanide m-chlorophenylhydrazone on Escherichia coli halotolerance. Ghoul M; Pommepuy M; Moillo-Batt A; Cormier M Appl Environ Microbiol; 1989 Apr; 55(4):1040-3. PubMed ID: 2658803 [TBL] [Abstract][Full Text] [Related]
14. Osmotic adaptation of Escherichia coli with a negligible proton motive force in the presence of carbonyl cyanide m-chlorophenylhydrazone. Ohyama T; Mugikura S; Nishikawa M; Igarashi K; Kobayashi H J Bacteriol; 1992 May; 174(9):2922-8. PubMed ID: 1314804 [TBL] [Abstract][Full Text] [Related]
15. Use of the adenylate energy charge ratio to measure growth state of natural microbial communities. Wiebe WJ; Bancroft K Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2112-5. PubMed ID: 806077 [TBL] [Abstract][Full Text] [Related]
16. A protonmotive force drives ATP synthesis in bacteria. Maloney PC; Kashket ER; Wilson TH Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406 [TBL] [Abstract][Full Text] [Related]
18. Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli. Andersen KB; von Meyenburg K J Biol Chem; 1977 Jun; 252(12):4151-6. PubMed ID: 16925 [TBL] [Abstract][Full Text] [Related]
19. [Stimulating effect of sodium ions on Escherichia coli growth in the presence of protonophore uncoupler]. Avetisian AV Biokhimiia; 1996 Mar; 61(3):555-8. PubMed ID: 8724610 [TBL] [Abstract][Full Text] [Related]
20. Effects of Ca2+ and a protonophore on growth of an Escherichia coli L-form. Onoda T; Oshima A J Gen Microbiol; 1988 Nov; 134(11):3071-7. PubMed ID: 3076181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]