BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 31361454)

  • 21. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties.
    Ju Z; Zhang S; Xing Z; Zhuang Q; Qiang Y; Qian Y
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20682-90. PubMed ID: 27467782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Self-Formed Nanosheet MoS
    Chang U; Lee JT; Yun JM; Lee B; Lee SW; Joh HI; Eom K; Fuller TF
    ACS Nano; 2019 Feb; 13(2):1490-1498. PubMed ID: 30580512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life.
    Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries.
    Yan Y; Xu Z; Liu C; Dou H; Wei J; Zhao X; Ma J; Dong Q; Xu H; He YS; Ma ZF; Yang X
    ACS Appl Mater Interfaces; 2019 May; 11(19):17375-17383. PubMed ID: 31008579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries.
    Zhang B; Xia G; Sun D; Fang F; Yu X
    ACS Nano; 2018 Apr; 12(4):3816-3824. PubMed ID: 29608285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.
    Jin Y; Tan Y; Hu X; Zhu B; Zheng Q; Zhang Z; Zhu G; Yu Q; Jin Z; Zhu J
    ACS Appl Mater Interfaces; 2017 May; 9(18):15388-15393. PubMed ID: 28414210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.
    Li Y; Meng Q; Zhu SM; Sun ZH; Yang H; Chen ZX; Zhu CL; Guo ZP; Zhang D
    Dalton Trans; 2015 Mar; 44(10):4594-600. PubMed ID: 25655996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density.
    Cao Z; Xu P; Zhai H; Du S; Mandal J; Dontigny M; Zaghib K; Yang Y
    Nano Lett; 2016 Nov; 16(11):7235-7240. PubMed ID: 27696883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Stability Lithium-Ion Battery Based on Optimized Graphene/Si Nanocomposites by Templated Assembly.
    Liu L; Li X; Zhang G; Zhang Z; Fang C; Ma H; Luo W; Liu Z
    ACS Omega; 2019 Nov; 4(19):18195-18202. PubMed ID: 31720520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constructing a Reinforced and Gradient Solid Electrolyte Interphase on Si Nanoparticles by In-Situ Thiol-Ene Click Reaction for Long Cycling Lithium-Ion Batteries.
    Zhao L; Zhang D; Huang Y; Lin K; Chen L; Lv W; He YB; Kang F
    Small; 2021 Oct; 17(40):e2102316. PubMed ID: 34494366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sn-C and Se-C Co-Bonding SnSe/Few-Layered Graphene Micro-Nano Structure: Route to a Densely Compacted and Durable Anode for Lithium/Sodium-Ion Batteries.
    Cheng D; Yang L; Hu R; Liu J; Che R; Cui J; Wu Y; Chen W; Huang J; Zhu M; Zhao YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36685-36696. PubMed ID: 31538763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design.
    Ren J; Ren RP; Lv YK
    Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium-Sulfur Batteries.
    Liu B; Zhang Y; Wang Z; Ai C; Liu S; Liu P; Zhong Y; Lin S; Deng S; Liu Q; Pan G; Wang X; Xia X; Tu J
    Adv Mater; 2020 Aug; 32(34):e2003657. PubMed ID: 32686213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition.
    Yu M; Wang A; Wang Y; Li C; Shi G
    Nanoscale; 2014 Oct; 6(19):11419-24. PubMed ID: 25148141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organometallic Precursor-Derived SnO
    Sui X; Huang X; Wu Y; Ren R; Pu H; Chang J; Zhou G; Mao S; Chen J
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26170-26177. PubMed ID: 29995381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.
    Jiang Y; Yuan T; Sun W; Yan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte.
    Chang ZH; Wang JT; Wu ZH; Gao M; Wu SJ; Lu SG
    ChemSusChem; 2018 Jun; 11(11):1787-1796. PubMed ID: 29673129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.