BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3136156)

  • 21. Inhibition of RNA synthesis in murine ependymoblastoma by the combination of amphotericin B and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea.
    Laurent G; Dewerie-Vanhouche J; Machin D; Hildebrand J
    Cancer Res; 1980 Mar; 40(3):939-42. PubMed ID: 7471107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model for the regulation of the calmodulin-dependent enzymes erythrocyte Ca2+-transport ATPase and brain phosphodiesterase by activators and inhibitors.
    Gietzen K; Sadorf I; Bader H
    Biochem J; 1982 Dec; 207(3):541-8. PubMed ID: 6299272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulation of the erythrocyte Ca2+-ATPase and of bovine brain cyclic nucleotide phosphodiesterase by chemically modified calmodulin.
    Guerini D; Krebs J; Carafoli E
    Eur J Biochem; 1987 Dec; 170(1-2):35-42. PubMed ID: 2826158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of uptake of nitrosoureas by L5178Y lymphoblasts in vitro.
    Begleiter A; Lam HP; Goldenberg GJ
    Cancer Res; 1977 Apr; 37(4):1022-7. PubMed ID: 557367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New method to measure the carbamoylating activity of nitrosoureas by electron paramagnetic resonance spectroscopy.
    Gadzheva V; Ichimori K; Raikov Z; Nakazawa H
    Free Radic Res; 1997 Aug; 27(2):197-206. PubMed ID: 9350424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific acylation of calmodulin. Synthesis and adduct formation with a fluorenyl-based spin label.
    Jackson AE; Puett D
    J Biol Chem; 1984 Dec; 259(23):14985-92. PubMed ID: 6094585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent modification of stathmin by CCNU determined by FTMS analysis of modified proteins and tryptic peptides.
    Wu WW; Wang G; Liang XJ; Park JK; Shen RF
    Biochem Biophys Res Commun; 2008 Feb; 367(1):7-13. PubMed ID: 18162179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemosensitization of the nitrosoureas by 2-nitroimidazoles in the subcutaneous 9L tumor model: pharmacokinetic and structure-activity considerations.
    Wong KH; Wallen CA; Wheeler KT
    Int J Radiat Oncol Biol Phys; 1990 May; 18(5):1043-50. PubMed ID: 2140824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of carbamoylating activity of nitrosoureas and isocyanates by a novel high-pressure liquid chromatography assay.
    Brubaker WF; Zhao HP; Prusoff WH
    Biochem Pharmacol; 1986 Jul; 35(14):2359-65. PubMed ID: 3729992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA sequence selectivity of guanine-N7 alkylation by three antitumor chloroethylating agents.
    Hartley JA; Gibson NW; Kohn KW; Mattes WB
    Cancer Res; 1986 Apr; 46(4 Pt 2):1943-7. PubMed ID: 3004713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of nitrosoureas on human DNA polymerase activities from acute and chronic granulocytic leukemia cells.
    Chuang RY; Laszlo J; Keller P
    Biochim Biophys Acta; 1976 Apr; 425(4):463-8. PubMed ID: 1063042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of carbamoylating agents on tumor metabolism.
    Lea MA
    Crit Rev Oncol Hematol; 1987; 7(4):329-71. PubMed ID: 3322594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin.
    Ota IM; Clarke S
    Biochemistry; 1989 May; 28(9):4020-7. PubMed ID: 2502176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calmodulin interacts with cyclic nucleotide phosphodiesterase and calcineurin by binding to a metal ion-independent hydrophobic region on these proteins.
    Gopalakrishna R; Anderson WB
    J Biol Chem; 1983 Feb; 258(4):2405-9. PubMed ID: 6296146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calmodulin and Ca2+-dependent phosphorylation and dephosphorylation of 63-kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme.
    Sharma RK; Wang JH
    J Biol Chem; 1986 Jan; 261(3):1322-8. PubMed ID: 3944089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of phenobarbital pretreatment on the antitumor activity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) and 1-(2-chloroethyl)-3-(2,6-dioxo-3-piperidyl-1-nitrosourea (PCNU), and on the plasma pharmacokinetics and biotransformation of BCNU.
    Levin VA; Stearns J; Byrd A; Finn A; Weinkam RJ
    J Pharmacol Exp Ther; 1979 Jan; 208(1):1-6. PubMed ID: 759602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy.
    Zhang M; Huque E; Vogel HJ
    J Biol Chem; 1994 Feb; 269(7):5099-105. PubMed ID: 8106489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon-13 NMR studies of the lysine side chains of calmodulin and its proteolytic fragments.
    Huque ME; Vogel HJ
    J Protein Chem; 1993 Dec; 12(6):695-707. PubMed ID: 8136020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin.
    Guerini D; Krebs J; Carafoli E
    J Biol Chem; 1984 Dec; 259(24):15172-7. PubMed ID: 6239867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro aging of calmodulin generates isoaspartate at multiple Asn-Gly and Asp-Gly sites in calcium-binding domains II, III, and IV.
    Potter SM; Henzel WJ; Aswad DW
    Protein Sci; 1993 Oct; 2(10):1648-63. PubMed ID: 8251940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.