These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31361753)

  • 1. Using distant supervision to augment manually annotated data for relation extraction.
    Su P; Li G; Wu C; Vijay-Shanker K
    PLoS One; 2019; 14(7):e0216913. PubMed ID: 31361753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of asthma control factor in clinical notes using a hybrid deep learning model.
    Agnikula Kshatriya BS; Sagheb E; Wi CI; Yoon J; Seol HY; Juhn Y; Sohn S
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 7):272. PubMed ID: 34753481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs.
    Yi PH; Kim TK; Lin CT
    Clin Imaging; 2022 Jul; 87():34-37. PubMed ID: 35483162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic de-identification of French electronic health records: a cost-effective approach exploiting distant supervision and deep learning models.
    Azzouzi ME; Coatrieux G; Bellafqira R; Delamarre D; Riou C; Oubenali N; Cabon S; Cuggia M; Bouzillé G
    BMC Med Inform Decis Mak; 2024 Feb; 24(1):54. PubMed ID: 38365677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annotation of phenotypes using ontologies: a gold standard for the training and evaluation of natural language processing systems.
    Dahdul W; Manda P; Cui H; Balhoff JP; Dececchi TA; Ibrahim N; Lapp H; Vision T; Mabee PM
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30576485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntax-based transfer learning for the task of biomedical relation extraction.
    Legrand J; Toussaint Y; Raïssi C; Coulet A
    J Biomed Semantics; 2021 Aug; 12(1):16. PubMed ID: 34407869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain transformation on biological event extraction by learning methods.
    Hou WJ; Ceesay B
    J Biomed Inform; 2019 Jul; 95():103236. PubMed ID: 31226306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitating information extraction without annotated data using unsupervised and positive-unlabeled learning.
    Korach ZT; Yerneni S; Einbinder J; Kallenberg C; Zhou L
    AMIA Annu Symp Proc; 2020; 2020():658-667. PubMed ID: 33936440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BioRel: towards large-scale biomedical relation extraction.
    Xing R; Luo J; Song T
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):543. PubMed ID: 33323106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of single-domain and multidomain medication and adverse drug event relation extraction from electronic health record notes using advanced deep learning models.
    Li F; Yu H
    J Am Med Inform Assoc; 2019 Jul; 26(7):646-654. PubMed ID: 30938761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinical text classification paradigm using weak supervision and deep representation.
    Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.
    Otálora S; Marini N; Müller H; Atzori M
    BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tell me your position: Distantly supervised biomedical entity relation extraction using entity position marker.
    Zhu J; Dong J; Du H; Geng Y; Fan S; Yu H; Shao Z; Wang X; Yang Y; Xu W
    Neural Netw; 2023 Nov; 168():531-538. PubMed ID: 37837742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Biomedical Relation Extraction with Transformer Models using Shortest Dependency Path Features and Triplet Information.
    Kanjirangat V; Rinaldi F
    J Biomed Inform; 2021 Oct; 122():103893. PubMed ID: 34481058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building a comprehensive syntactic and semantic corpus of Chinese clinical texts.
    He B; Dong B; Guan Y; Yang J; Jiang Z; Yu Q; Cheng J; Qu C
    J Biomed Inform; 2017 May; 69():203-217. PubMed ID: 28404537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AIONER: all-in-one scheme-based biomedical named entity recognition using deep learning.
    Luo L; Wei CH; Lai PT; Leaman R; Chen Q; Lu Z
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37171899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.
    Wolf D; Payer T; Lisson CS; Lisson CG; Beer M; Götz M; Ropinski T
    Sci Rep; 2023 Nov; 13(1):20260. PubMed ID: 37985685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoCoScore: context-aware co-occurrence scoring for text mining applications using distant supervision.
    Junge A; Jensen LJ
    Bioinformatics; 2020 Jan; 36(1):264-271. PubMed ID: 31199464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Language model based on deep learning network for biomedical named entity recognition.
    Hou G; Jian Y; Zhao Q; Quan X; Zhang H
    Methods; 2024 Jun; 226():71-77. PubMed ID: 38641084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.