These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31361829)

  • 1. Evaluating containment effectiveness of A2 and B2 biological safety cabinets.
    Taylor AV; Baker N; Hulsey M; Bennett CC; Meiners M; Gonzales BA
    Am J Health Syst Pharm; 2019 Apr; 76(9):599-607. PubMed ID: 31361829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process.
    Hu SC; Shiue A; Tu JX; Liu HY; Chiu RB
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19264-72. PubMed ID: 26257118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of surface contamination with cyclophosphamide following simulated hazardous drug preparation activities using two closed-system products.
    Zock MD; Soefje S; Rickabaugh K
    J Oncol Pharm Pract; 2011 Mar; 17(1):49-54. PubMed ID: 20584743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the biosafety of cell sorting by adaptation of a cell sorting system to a biosafety cabinet.
    Lennartz K; Lu M; Flasshove M; Moritz T; Kirstein U
    Cytometry A; 2005 Aug; 66(2):119-27. PubMed ID: 15973698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of external contamination on the vial surfaces of some hazardous drugs that commonly used in Chinese hospitals and comparison between environmental contamination generated during robotic compounding by IV: Dispensing robot vs. manual compounding in biological safety cabinet.
    Ml H; T W; Jq Z; Yj S; Tj G; Lk Z; J L; Jf Y
    J Oncol Pharm Pract; 2022 Oct; 28(7):1487-1498. PubMed ID: 34162245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid dynamics of cytotoxic safety cabinets.
    Braconnier R; Bonthoux F
    Ann Occup Hyg; 2010 Mar; 54(2):236-46. PubMed ID: 20007340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Closed-system Transfer Devices in Reducing Potential Risk for Surface Contamination Following Simulated Hazardous-drug Preparation and Compounding.
    Soefje S; Rickabaugh K; Rajkumar R; Wall KP
    Int J Pharm Compd; 2021; 25(6):515-522. PubMed ID: 34807847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Closed-system Transfer Devices in Reducing Potential Risk for Surface Contamination Following Simulated Hazardous-drug Preparation and Compounding.
    Soefje S; Rickabaugh K; Rajkumar R; Wall KP
    Int J Pharm Compd; 2022; 26(1):72-79. PubMed ID: 35081047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary Engineering Controls in Pharmaceutical Compounding, Part 2: Biosafety Cabinets.
    Mulder K
    Int J Pharm Compd; 2020; 24(1):7-12. PubMed ID: 32023210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow and performance of an air-curtain biological safety cabinet.
    Huang RF; Chou CI
    Ann Occup Hyg; 2009 Jun; 53(4):425-40. PubMed ID: 19398506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental contamination by cyclophosphamide preparation: Comparison of conventional manual production in biological safety cabinet and robot-assisted production by APOTECAchemo.
    Schierl R; Masini C; Groeneveld S; Fischer E; Böhlandt A; Rosini V; Paolucci D
    J Oncol Pharm Pract; 2016 Feb; 22(1):37-45. PubMed ID: 25227229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological safety cabinetry.
    Kruse RH; Puckett WH; Richardson JH
    Clin Microbiol Rev; 1991 Apr; 4(2):207-41. PubMed ID: 2070345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of surface contamination with cyclophosphamide and fluorouracil using a closed-system drug transfer device versus standard preparation techniques.
    Harrison BR; Peters BG; Bing MR
    Am J Health Syst Pharm; 2006 Sep; 63(18):1736-44. PubMed ID: 16960258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of airflow rates and operator activity on containment of bacterial aerosols in a class II safety cabinet.
    Macher JM; First MW
    Appl Environ Microbiol; 1984 Sep; 48(3):481-5. PubMed ID: 6437327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of outside air temperature on the preparation of antineoplastic drug solutions in biological safety cabinets.
    Umemura M; Itoh A; Ando Y; Yamada K; Wakiya Y; Nabeshima T
    J Oncol Pharm Pract; 2015 Aug; 21(4):243-8. PubMed ID: 24714128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design modifications of a class II biological safety cabinet and user guidelines for enhancing safety.
    Stimpfel TM; Gershey EL
    Am Ind Hyg Assoc J; 1991 Jan; 52(1):1-5. PubMed ID: 1996536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syringe plunger contamination by hazardous drugs: a comparative study.
    Smith ST; Szlaczky MC
    J Oncol Pharm Pract; 2014 Oct; 20(5):381-5. PubMed ID: 24598373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential for airborne contamination in turbulent- and unidirectional-airflow compounding aseptic isolators.
    Peters GF; McKeon MR; Weiss WT
    Am J Health Syst Pharm; 2007 Mar; 64(6):622-31. PubMed ID: 17353571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reevaluation of the biological certification test for the class II biological safety cabinets.
    Hino S; Sato H
    Jpn J Exp Med; 1984 Feb; 54(1):39-49. PubMed ID: 6482059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a closed system drug-transfer device eliminates surface contamination with antineoplastic agents.
    Clark BA; Sessink PJ
    J Oncol Pharm Pract; 2013 Jun; 19(2):99-104. PubMed ID: 23292973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.