BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 31362011)

  • 1. Non-coding RNAs in endothelial cell signalling and hypoxia during cardiac regeneration.
    Peters MMC; Sampaio-Pinto V; da Costa Martins PA
    Biochim Biophys Acta Mol Cell Res; 2020 Mar; 1867(3):118515. PubMed ID: 31362011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardial plasticity: cardiac development, regeneration and disease.
    Bloomekatz J; Galvez-Santisteban M; Chi NC
    Curr Opin Genet Dev; 2016 Oct; 40():120-130. PubMed ID: 27498024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human
    Lee S; Hesse R; Tamaki S; Garland C; Pomerantz JH
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32570883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerative biology: Neuregulin 1 makes heart muscle.
    Yutzey KE
    Nature; 2015 Apr; 520(7548):445-6. PubMed ID: 25903623
    [No Abstract]   [Full Text] [Related]  

  • 5. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction.
    Gao F; Kataoka M; Liu N; Liang T; Huang ZP; Gu F; Ding J; Liu J; Zhang F; Ma Q; Wang Y; Zhang M; Hu X; Kyselovic J; Hu X; Pu WT; Wang J; Chen J; Wang DZ
    Nat Commun; 2019 Apr; 10(1):1802. PubMed ID: 30996254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long Non-coding RNA ECRAR Triggers Post-natal Myocardial Regeneration by Activating ERK1/2 Signaling.
    Chen Y; Li X; Li B; Wang H; Li M; Huang S; Sun Y; Chen G; Si X; Huang C; Liao W; Liao Y; Bin J
    Mol Ther; 2019 Jan; 27(1):29-45. PubMed ID: 30528086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Molecular Mechanisms Associated with Aerobic Exercise-Induced Cardiac Regeneration.
    Bo B; Zhou Y; Zheng Q; Wang G; Zhou K; Wei J
    Biomolecules; 2020 Dec; 11(1):. PubMed ID: 33375497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research progress on myocardial regeneration: what is new?
    Du C; Fan Y; Li YF; Wei TW; Wang LS
    Chin Med J (Engl); 2020 Mar; 133(6):716-723. PubMed ID: 32049749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart.
    Davidson SM; Padró T; Bollini S; Vilahur G; Duncker DJ; Evans PC; Guzik T; Hoefer IE; Waltenberger J; Wojta J; Weber C
    Cardiovasc Res; 2021 Aug; 117(10):2161-2174. PubMed ID: 34114614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Gridlock transcriptional repressor impedes vertebrate heart regeneration by restricting expression of lysine methyltransferase.
    She P; Zhang H; Peng X; Sun J; Gao B; Zhou Y; Zhu X; Hu X; Lai KS; Wong J; Zhou B; Wang L; Zhong TP
    Development; 2020 Sep; 147(18):. PubMed ID: 32988975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mRNA-Based Protein Replacement Therapy for the Heart.
    Magadum A; Kaur K; Zangi L
    Mol Ther; 2019 Apr; 27(4):785-793. PubMed ID: 30611663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-coding RNAs in Cardiac Regeneration.
    van der Ven CFT; Hogewoning BCR; van Mil A; Sluijter JPG
    Adv Exp Med Biol; 2020; 1229():163-180. PubMed ID: 32285411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac endothelial cells express Wilms' tumor-1: Wt1 expression in the developing, adult and infarcted heart.
    Duim SN; Kurakula K; Goumans MJ; Kruithof BP
    J Mol Cell Cardiol; 2015 Apr; 81():127-35. PubMed ID: 25681586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular vesicle-derived CircWhsc1 promotes cardiomyocyte proliferation and heart repair by activating TRIM59/STAT3/Cyclin B2 pathway.
    Wei G; Li C; Jia X; Xie J; Tang Z; Jin M; Chen Q; Sun Y; He S; Li X; Chen Y; Zheng H; Liao W; Liao Y; Bin J; Huang S
    J Adv Res; 2023 Nov; 53():199-218. PubMed ID: 36587763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac repair and the putative role of stem cells.
    Buja LM
    J Mol Cell Cardiol; 2019 Mar; 128():96-104. PubMed ID: 30703353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-34a Plays a Key Role in Cardiac Repair and Regeneration Following Myocardial Infarction.
    Yang Y; Cheng HW; Qiu Y; Dupee D; Noonan M; Lin YD; Fisch S; Unno K; Sereti KI; Liao R
    Circ Res; 2015 Aug; 117(5):450-9. PubMed ID: 26082557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential.
    Wang Y; Chen J; Cowan DB; Wang DZ
    Semin Cell Dev Biol; 2021 Oct; 118():150-162. PubMed ID: 34284952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Animal Models of Cell-Free Cardiac Regeneration.
    Spannbauer A; Mester-Tonczar J; Traxler D; Kastner N; Zlabinger K; Hašimbegović E; Riesenhuber M; Pavo N; Goliasch G; Gyöngyösi M
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 33003617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism.
    De Siena R; Balducci L; Blasi A; Montanaro MG; Saldarelli M; Saponaro V; Martino C; Logrieco G; Soleti A; Fiobellot S; Madeddu P; Rossi G; Ribatti D; Crovace A; Cristini S; Invernici G; Parati EA; Alessandri G
    Exp Cell Res; 2010 Jul; 316(11):1804-15. PubMed ID: 20156437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration.
    Gong R; Jiang Z; Zagidullin N; Liu T; Cai B
    Signal Transduct Target Ther; 2021 Jan; 6(1):31. PubMed ID: 33500391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.