These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 31362355)

  • 1. Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties.
    Zhu H; Prasad A; Doja S; Bichler L; Liu J
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31362355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Li
    Yang G; Safanama D; Phuah KC; Adams S
    ACS Omega; 2020 Jul; 5(29):18205-18212. PubMed ID: 32743195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering.
    Cretu S; Bradley DG; Feng LPW; Kudu OU; Nguyen LL; Nguyen TT; Jamali A; Chotard JN; Seznec V; Hanna JV; Demortière A; Duchamp M
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39186-39197. PubMed ID: 37556356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Stability of Lithium Aluminum Germanium Phosphate with Lithium Metal by Interface Engineering.
    Zhang Y; Liu H; Xie Z; Qu W; Liu J
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the Microstructure and Ionic Conductivity of Cold Sintered NASICON Solid Electrolyte for Solid-State Batteries.
    Liu Y; Liu J; Sun Q; Wang D; Adair KR; Liang J; Zhang C; Zhang L; Lu S; Huang H; Song X; Sun X
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27890-27896. PubMed ID: 31298519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite NASICON (Na
    Oh JAS; He L; Plewa A; Morita M; Zhao Y; Sakamoto T; Song X; Zhai W; Zeng K; Lu L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40125-40133. PubMed ID: 31592636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Li
    Li Q; Wang X; Wang L; Zhu S; Zhong Q; Li Y; Zhou Q
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Effect of Calcination and Sintering on the Reduction of Grain Boundary Resistance of LATP Solid Electrolyte.
    Park C; Na S; Park HG; Park K
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26985-26992. PubMed ID: 37226962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li
    Dong Z; Xu C; Wu Y; Tang W; Song S; Yao J; Huang Z; Wen Z; Lu L; Hu N
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31083313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submicron-Sized Nb-Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of Quasi-Solid-State Lithium Battery.
    Ji Y; Zhou C; Lin F; Li B; Yang F; Zhu H; Duan J; Chen Z
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Performance of LiTa
    Kim N; Park W; Kim H; Yoon SY
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.
    Mahmoud MM; Cui Y; Rohde M; Ziebert C; Link G; Seifert HJ
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study.
    Chu IH; Nguyen H; Hy S; Lin YC; Wang Z; Xu Z; Deng Z; Meng YS; Ong SP
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7843-53. PubMed ID: 26950604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Effective Interfaces for Li
    Yu Q; Han D; Lu Q; He YB; Li S; Liu Q; Han C; Kang F; Li B
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9911-9918. PubMed ID: 30730128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics.
    Ahmad MM
    Nanoscale Res Lett; 2015; 10():58. PubMed ID: 25852355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithium Dendrite Propagation in Ta-Doped Li
    Guo J; Chan CK
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4519-4529. PubMed ID: 38233079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries.
    Guo Q; Han Y; Wang H; Xiong S; Li Y; Liu S; Xie K
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41837-41844. PubMed ID: 29131566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Phase Induced Lithium Dendrite Suppression in Glass-Ceramic Garnet-Type Solid Electrolytes.
    Hoinkis N; Schuhmacher J; Fuchs T; Leukel S; Loho C; Roters A; Richter FH; Janek J
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28692-28704. PubMed ID: 37254535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Conductivity Argyrodite Li
    Wang S; Zhang Y; Zhang X; Liu T; Lin YH; Shen Y; Li L; Nan CW
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42279-42285. PubMed ID: 30451491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.