These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31362397)
21. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester. Jang JU; Park HC; Lee HS; Khil MS; Kim SY Sci Rep; 2018 May; 8(1):7659. PubMed ID: 29769569 [TBL] [Abstract][Full Text] [Related]
22. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Hu N; Masuda Z; Yan C; Yamamoto G; Fukunaga H; Hashida T Nanotechnology; 2008 May; 19(21):215701. PubMed ID: 21730580 [TBL] [Abstract][Full Text] [Related]
23. On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Melnikov P; Bobrov A; Marfin Y Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298026 [TBL] [Abstract][Full Text] [Related]
24. Elliptic percolation model for predicting the electrical conductivity of graphene-polymer composites. Aryanfar A; Medlej S; Tarhini A; Tehrani B AR Soft Matter; 2021 Mar; 17(8):2081-2089. PubMed ID: 33439207 [TBL] [Abstract][Full Text] [Related]
25. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics. Poulose AM; Elnour AY; Anis A; Shaikh H; Al-Zahrani SM; George J; Al-Wabel MI; Usman AR; Ok YS; Tsang DCW; Sarmah AK Sci Total Environ; 2018 Apr; 619-620():311-318. PubMed ID: 29154049 [TBL] [Abstract][Full Text] [Related]
26. Development of Multi-Functional Graphene Polymer Composites Having Electromagnetic Interference Shielding and De-Icing Properties. Ha JH; Hong SK; Ryu JK; Bae J; Park SH Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31847400 [TBL] [Abstract][Full Text] [Related]
27. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711 [TBL] [Abstract][Full Text] [Related]
28. Direct current conductivity of carbon nanofiber-based conductive polymer composites: effects of temperature and electric field. He LX; Tjong SC J Nanosci Nanotechnol; 2011 May; 11(5):3916-21. PubMed ID: 21780386 [TBL] [Abstract][Full Text] [Related]
29. Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics. Gu J; Ruan K Nanomicro Lett; 2021 Apr; 13(1):110. PubMed ID: 34138331 [TBL] [Abstract][Full Text] [Related]
30. Properties of Polymer Composites Used in High-Voltage Applications. Pleşa I; Noţingher PV; Schlögl S; Sumereder C; Muhr M Polymers (Basel); 2016 Apr; 8(5):. PubMed ID: 30979265 [TBL] [Abstract][Full Text] [Related]
32. Selection of Immiscible Polymer Blends Filled with Carbon Nanotubes for Heating Applications. Marischal L; Cayla A; Lemort G; Campagne C; Devaux É Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31698870 [TBL] [Abstract][Full Text] [Related]
33. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. Kargar F; Barani Z; Salgado R; Debnath B; Lewis JS; Aytan E; Lake RK; Balandin AA ACS Appl Mater Interfaces; 2018 Oct; 10(43):37555-37565. PubMed ID: 30299919 [TBL] [Abstract][Full Text] [Related]
34. Addition of Graphite Filler to Enhance Electrical, Morphological, Thermal, and Mechanical Properties in Poly (Ethylene Terephthalate): Experimental Characterization and Material Modeling. Alshammari BA; Al-Mubaddel FS; Karim MR; Hossain M; Al-Mutairi AS; Wilkinson AN Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31466258 [TBL] [Abstract][Full Text] [Related]
35. Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites. Perets Y; Matzui L; Vovchenko L; Ovsiienko I; Yakovenko O; Lazarenko O; Zhuravkov A; Brusylovets O Nanoscale Res Lett; 2016 Dec; 11(1):370. PubMed ID: 27550050 [TBL] [Abstract][Full Text] [Related]
37. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Zhang Z; Hu L; Wang R; Zhang S; Fu L; Li M; Xiao Q Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399924 [TBL] [Abstract][Full Text] [Related]
38. Prediction of the percolation threshold and electrical conductivity of self-assembled antimony-doped tin oxide nanoparticles into ordered structures in PMMA/ATO nanocomposites. Jin Y; Gerhardt RA ACS Appl Mater Interfaces; 2014 Dec; 6(24):22264-71. PubMed ID: 25427537 [TBL] [Abstract][Full Text] [Related]
39. Influence of Different Carbon-Based Fillers on Electrical and Mechanical Properties of a PC/ABS Blend. Dal Lago E; Cagnin E; Boaretti C; Roso M; Lorenzetti A; Modesti M Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31877984 [TBL] [Abstract][Full Text] [Related]
40. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs. Chang CM; Liu YL ACS Appl Mater Interfaces; 2011 Jul; 3(7):2204-8. PubMed ID: 21644521 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]