These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31362463)

  • 1. Imaging Aluminum Particles in Solid-Propellant Flames Using 5 kHz LIF of Al Atoms.
    Vilmart G; Dorval N; Devillers R; Fabignon Y; Attal-Trétout B; Bresson A
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31362463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of iron atoms by emission spectroscopy and laser-induced fluorescence in solid propellant flames.
    Vilmart G; Dorval N; Orain M; Lambert D; Devillers R; Fabignon Y; Attal-Tretout B; Bresson A
    Appl Opt; 2018 May; 57(14):3817-3828. PubMed ID: 29791348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the agglomeration reduction mechanism of the aluminized HTPB propellant containing ferric perfluorooctanoate [Fe(PFO)
    Zhen F; Zhou X; Zou M; Meng L; Yang R; Wang L; Huang F; Li J
    RSC Adv; 2019 Jun; 9(33):19031-19038. PubMed ID: 35516873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced fluorescence in high pressure solid propellant flames.
    Edwards T; Weaver DP; Campbell DH
    Appl Opt; 1987 Sep; 26(17):3496-509. PubMed ID: 20490094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum flame temperature measurements in solid propellant combustion.
    Parigger CG; Woods AC; Surmick DM; Donaldson AB; Height JL
    Appl Spectrosc; 2014; 68(3):362-6. PubMed ID: 24666953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AP-HTPB propellant combustion under strain conditions with laser absorption spectroscopy.
    Gu M; Ouyang J; Wang S; Yuan W; Shi X; Hou K; Xiao L; Gao H; Zhou Z; Qi F
    Appl Opt; 2023 Feb; 62(6):A37-A45. PubMed ID: 36821298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion.
    Cho KY; Satija A; Pourpoint TL; Son SF; Lucht RP
    Appl Opt; 2014 Jan; 53(3):316-26. PubMed ID: 24514114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames.
    Wang Z; Stamatoglou P; Li Z; Aldén M; Richter M
    Opt Express; 2017 Nov; 25(24):30214-30228. PubMed ID: 29221053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ray tracing calculations in simulated propellant flames with detailed chemistry.
    Maurer M; Bojko B; Byrd EFC; Kalman J
    Appl Opt; 2019 Feb; 58(6):1451-1459. PubMed ID: 30874030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lidar measurements of solid rocket propellant fire particle plumes.
    Brown DM; Brown AM; Willitsford AH; Dinello-Fass R; Airola MB; Siegrist KM; Thomas ME; Chang Y
    Appl Opt; 2016 Jun; 55(17):4657-69. PubMed ID: 27409023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering.
    Kearney SP; Guildenbecher DR
    Appl Opt; 2016 Jun; 55(18):4958-66. PubMed ID: 27409125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Size and Prestressing of Aluminum Particles on the Oxidation of Levitated
    Lucas M; Brotton SJ; Min A; Woodruff C; Pantoya ML; Kaiser RI
    J Phys Chem A; 2020 Feb; 124(8):1489-1507. PubMed ID: 32065522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Flame Structures of Double-Base Propellant and Modified Double-Base Propellant Containing Nitramine Using OH-PLIF and Kinetic Simulation.
    Wang Y; Zhang Y; Li H; Yao E; Yu J; Zhao F; Xu S
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography.
    Guildenbecher DR; Cooper MA; Gill W; Stauffacher HL; Oliver MS; Grasser TW
    Opt Lett; 2014 Sep; 39(17):5126-9. PubMed ID: 25166090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames.
    Ma L; Lei Q; Capil T; Hammack SD; Carter CD
    Opt Lett; 2017 Jan; 42(2):267-270. PubMed ID: 28081089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrally resolved, 1D, mid-infrared imaging of temperature, CO
    McDonald A; Tancin RJ; Goldenstein CS
    Appl Opt; 2021 Jun; 60(16):4524-4534. PubMed ID: 34143006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combustion Enhancement of Gel Propellant Containing High Concentration Aluminum Particles Based on Carbon Synergistic Effect.
    Chen J; Zhao H; Li W; Liu H
    Gels; 2024 Jan; 10(2):. PubMed ID: 38391419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced-breakdown-spectroscopy-based detection of metal particles released into the air during combustion of solid propellants.
    O'Neil M; Niemiec NA; Demko AR; Petersen EL; Kulatilaka WD
    Appl Opt; 2018 Mar; 57(8):1910-1917. PubMed ID: 29521974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field recovery from digital inline holographic images of composite propellant combustion base on denoising diffusion model.
    Xu G; Jin B; Yang S; Liu P
    Opt Express; 2023 Nov; 31(23):38216-38227. PubMed ID: 38017933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the combustion mechanisms of ZrH
    Yang Y; Zhao F; Yuan Z; Wang Y; An T; Chen X; Xuan C; Zhang J
    Phys Chem Chem Phys; 2017 Dec; 19(48):32597-32604. PubMed ID: 29192708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.