BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31362487)

  • 1. Construction of Genetic Logic Gates Based on the T7 RNA Polymerase Expression System in
    DeLorenzo DM; Moon TS
    ACS Synth Biol; 2019 Aug; 8(8):1921-1930. PubMed ID: 31362487
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.
    DeLorenzo DM; Henson WR; Moon TS
    ACS Synth Biol; 2017 Oct; 6(10):1973-1978. PubMed ID: 28745867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630.
    DeLorenzo DM; Rottinghaus AG; Henson WR; Moon TS
    ACS Synth Biol; 2018 Feb; 7(2):727-738. PubMed ID: 29366319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of
    Anthony WE; Carr RR; DeLorenzo DM; Campbell TP; Shang Z; Foston M; Moon TS; Dantas G
    Biotechnol Biofuels; 2019; 12():192. PubMed ID: 31404385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the transcriptional regulation of the catabolism of lignin-derived aromatics in Rhodococcus opacus PD630.
    Diao J; Carr R; Moon TS
    Commun Biol; 2022 Oct; 5(1):1109. PubMed ID: 36261484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.
    Heiss S; Hörmann A; Tauer C; Sonnleitner M; Egger E; Grabherr R; Heinl S
    Microb Cell Fact; 2016 Mar; 15():50. PubMed ID: 26966093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level.
    Kortmann M; Kuhl V; Klaffl S; Bott M
    Microb Biotechnol; 2015 Mar; 8(2):253-65. PubMed ID: 25488698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems.
    Yu TC; Liu WL; Brinck MS; Davis JE; Shek J; Bower G; Einav T; Insigne KD; Phillips R; Kosuri S; Urtecho G
    Nat Commun; 2021 Jan; 12(1):325. PubMed ID: 33436562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.
    Wang B; Rezenom YH; Cho KC; Tran JL; Lee DG; Russell DH; Gill JJ; Young R; Chu KH
    Bioresour Technol; 2014 Jun; 161():162-70. PubMed ID: 24698742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of synthetic T7 RNA polymerase expression systems.
    Kar S; Ellington AD
    Methods; 2018 Jul; 143():110-120. PubMed ID: 29518499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CRISPR/Cas9-based single-stranded DNA recombineering system for genome editing of
    Liang Y; Wei Y; Jiao S; Yu H
    Synth Syst Biotechnol; 2021 Sep; 6(3):200-208. PubMed ID: 34430726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
    Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2013 Sep; 79(17):5159-66. PubMed ID: 23793636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxygenases of Chlorobiphenyl-Degrading Species Rhodococcus wratislaviensis G10 and Chlorophenol-Degrading Species Rhodococcus opacus 1CP Induced in Benzoate-Grown Cells and Genes Potentially Involved in These Processes.
    Solyanikova IP; Borzova OV; Emelyanova EV; Shumkova ES; Prisyazhnaya NV; Plotnikova EG; Golovleva LA
    Biochemistry (Mosc); 2016 Sep; 81(9):986-98. PubMed ID: 27682171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmids for Controlled and Tunable High-Level Expression in E. coli.
    Schuster LA; Reisch CR
    Appl Environ Microbiol; 2022 Nov; 88(22):e0093922. PubMed ID: 36342148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved CRISPR Interference Tool to Engineer
    DeLorenzo DM; Diao J; Carr R; Hu Y; Moon TS
    ACS Synth Biol; 2021 Apr; 10(4):786-798. PubMed ID: 33787248
    [No Abstract]   [Full Text] [Related]  

  • 20. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid.
    Jain G; Ertesvåg H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7129-7138. PubMed ID: 36194264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.