These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31362508)

  • 1. Fertility-GRU: Identifying Fertility-Related Proteins by Incorporating Deep-Gated Recurrent Units and Original Position-Specific Scoring Matrix Profiles.
    Le NQK
    J Proteome Res; 2019 Sep; 18(9):3503-3511. PubMed ID: 31362508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles.
    Le NQK; Huynh TT; Yapp EKY; Yeh HY
    Comput Methods Programs Biomed; 2019 Aug; 177():81-88. PubMed ID: 31319963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins.
    Le NQK; Yapp EKY; Yeh HY
    BMC Bioinformatics; 2019 Jul; 20(1):377. PubMed ID: 31277574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of adaptor proteins using recurrent neural networks and PSSM profiles.
    Khanh Le NQ; Nguyen QH; Chen X; Rahardja S; Nguyen BP
    BMC Genomics; 2019 Dec; 20(Suppl 9):966. PubMed ID: 31874633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational identification of vesicular transport proteins from sequences using deep gated recurrent units architecture.
    Le NQK; Yapp EKY; Nagasundaram N; Chua MCH; Yeh HY
    Comput Struct Biotechnol J; 2019; 17():1245-1254. PubMed ID: 31921391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PrESOgenesis: A two-layer multi-label predictor for identifying fertility-related proteins using support vector machine and pseudo amino acid composition approach.
    Bakhtiarizadeh MR; Rahimi M; Mohammadi-Sangcheshmeh A; Shariati J V; Salami SA
    Sci Rep; 2018 Jun; 8(1):9025. PubMed ID: 29899414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of adaptor proteins by incorporating deep learning and PSSM profiles.
    Gao W; Xu D; Li H; Du J; Wang G; Li D
    Methods; 2023 Jan; 209():10-17. PubMed ID: 36427763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNARE-CNN: a 2D convolutional neural network architecture to identify SNARE proteins from high-throughput sequencing data.
    Le NQK; Nguyen VN
    PeerJ Comput Sci; 2019; 5():e177. PubMed ID: 33816830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.
    Le NQ; Ho QT; Ou YY
    J Comput Chem; 2017 Sep; 38(23):2000-2006. PubMed ID: 28643394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of recurrent neural network in prognosis of peritoneal dialysis].
    Tang W; Gao JY; Ma XY; Zhang CH; Ma LT; Wang YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Jun; 51(3):602-608. PubMed ID: 31209438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using two-dimensional convolutional neural networks for identifying GTP binding sites in Rab proteins.
    Le NQK; Ho QT; Ou YY
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950005. PubMed ID: 30866734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction.
    Wang S; Li M; Guo L; Cao Z; Fei Y
    Comput Biol Chem; 2019 Aug; 81():9-15. PubMed ID: 31472418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit.
    Xuan P; Zhao L; Zhang T; Ye Y; Zhang Y
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31349692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prediction of chlorophyll-a concentrations in reservoirs by GRU neural network based on particle swarm algorithm optimized variational modal decomposition.
    Zhang X; Chen X; Zheng G; Cao G
    Environ Res; 2023 Mar; 221():115259. PubMed ID: 36634894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepPRMS: advanced deep learning model to predict protein arginine methylation sites.
    Khandelwal M; Kumar Rout R
    Brief Funct Genomics; 2024 Jul; 23(4):452-463. PubMed ID: 38267081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ncDENSE: a novel computational method based on a deep learning framework for non-coding RNAs family prediction.
    Chen K; Zhu X; Wang J; Hao L; Liu Z; Liu Y
    BMC Bioinformatics; 2023 Feb; 24(1):68. PubMed ID: 36849908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Splice-Site Prediction with Deep Neural Networks.
    Naito T
    J Comput Biol; 2018 Aug; 25(8):954-961. PubMed ID: 29668310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.