BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31362508)

  • 1. Fertility-GRU: Identifying Fertility-Related Proteins by Incorporating Deep-Gated Recurrent Units and Original Position-Specific Scoring Matrix Profiles.
    Le NQK
    J Proteome Res; 2019 Sep; 18(9):3503-3511. PubMed ID: 31362508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles.
    Le NQK; Huynh TT; Yapp EKY; Yeh HY
    Comput Methods Programs Biomed; 2019 Aug; 177():81-88. PubMed ID: 31319963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins.
    Le NQK; Yapp EKY; Yeh HY
    BMC Bioinformatics; 2019 Jul; 20(1):377. PubMed ID: 31277574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of adaptor proteins using recurrent neural networks and PSSM profiles.
    Khanh Le NQ; Nguyen QH; Chen X; Rahardja S; Nguyen BP
    BMC Genomics; 2019 Dec; 20(Suppl 9):966. PubMed ID: 31874633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational identification of vesicular transport proteins from sequences using deep gated recurrent units architecture.
    Le NQK; Yapp EKY; Nagasundaram N; Chua MCH; Yeh HY
    Comput Struct Biotechnol J; 2019; 17():1245-1254. PubMed ID: 31921391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNARE-CNN: a 2D convolutional neural network architecture to identify SNARE proteins from high-throughput sequencing data.
    Le NQK; Nguyen VN
    PeerJ Comput Sci; 2019; 5():e177. PubMed ID: 33816830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PrESOgenesis: A two-layer multi-label predictor for identifying fertility-related proteins using support vector machine and pseudo amino acid composition approach.
    Bakhtiarizadeh MR; Rahimi M; Mohammadi-Sangcheshmeh A; Shariati J V; Salami SA
    Sci Rep; 2018 Jun; 8(1):9025. PubMed ID: 29899414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of adaptor proteins by incorporating deep learning and PSSM profiles.
    Gao W; Xu D; Li H; Du J; Wang G; Li D
    Methods; 2023 Jan; 209():10-17. PubMed ID: 36427763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.
    Le NQ; Ho QT; Ou YY
    J Comput Chem; 2017 Sep; 38(23):2000-2006. PubMed ID: 28643394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of recurrent neural network in prognosis of peritoneal dialysis].
    Tang W; Gao JY; Ma XY; Zhang CH; Ma LT; Wang YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Jun; 51(3):602-608. PubMed ID: 31209438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using two-dimensional convolutional neural networks for identifying GTP binding sites in Rab proteins.
    Le NQK; Ho QT; Ou YY
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950005. PubMed ID: 30866734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions.
    Han S; Meng Z; Zhang X; Yan Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction.
    Wang S; Li M; Guo L; Cao Z; Fei Y
    Comput Biol Chem; 2019 Aug; 81():9-15. PubMed ID: 31472418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring Drug-Related Diseases Based on Convolutional Neural Network and Gated Recurrent Unit.
    Xuan P; Zhao L; Zhang T; Ye Y; Zhang Y
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31349692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved prediction of chlorophyll-a concentrations in reservoirs by GRU neural network based on particle swarm algorithm optimized variational modal decomposition.
    Zhang X; Chen X; Zheng G; Cao G
    Environ Res; 2023 Mar; 221():115259. PubMed ID: 36634894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ncDENSE: a novel computational method based on a deep learning framework for non-coding RNAs family prediction.
    Chen K; Zhu X; Wang J; Hao L; Liu Z; Liu Y
    BMC Bioinformatics; 2023 Feb; 24(1):68. PubMed ID: 36849908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen Receptor Binding Category Prediction with Deep Neural Networks and Structure-, Ligand-, and Statistically Based Features.
    García-Sosa AT
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33652992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.