BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31362699)

  • 1. Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice.
    Tsujioka H; Yamashita T
    BMC Genomics; 2019 Jul; 20(1):619. PubMed ID: 31362699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol Polyphosphate-5-Phosphatase K (
    Kauer SD; Fink KL; Li EHF; Evans BP; Golan N; Cafferty WBJ
    J Neurosci; 2022 Mar; 42(11):2190-2204. PubMed ID: 35135857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord.
    Kuang RZ; Kalil K
    J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord.
    Bareyre FM; Haudenschild B; Schwab ME
    J Neurosci; 2002 Aug; 22(16):7097-110. PubMed ID: 12177206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell death of corticospinal neurons is induced by axotomy before but not after innervation of spinal targets.
    Merline M; Kalil K
    J Comp Neurol; 1990 Jun; 296(3):506-16. PubMed ID: 2358550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian target of rapamycin's distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS.
    Lee DH; Luo X; Yungher BJ; Bray E; Lee JK; Park KK
    J Neurosci; 2014 Nov; 34(46):15347-55. PubMed ID: 25392502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased collateral sprouting of primary afferents in the myelin-free spinal cord.
    Schwegler G; Schwab ME; Kapfhammer JP
    J Neurosci; 1995 Apr; 15(4):2756-67. PubMed ID: 7536819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury.
    Jaerve A; Schiwy N; Schmitz C; Mueller HW
    Exp Neurol; 2011 Oct; 231(2):284-94. PubMed ID: 21806987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3.
    Jin D; Liu Y; Sun F; Wang X; Liu X; He Z
    Nat Commun; 2015 Nov; 6():8074. PubMed ID: 26598325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regenerating and sprouting axons differ in their requirements for growth after injury.
    Bernstein-Goral H; Diener PS; Bregman BS
    Exp Neurol; 1997 Nov; 148(1):51-72. PubMed ID: 9398450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
    Omoto S; Ueno M; Mochio S; Yamashita T
    Neurosci Res; 2011 Mar; 69(3):187-95. PubMed ID: 21147179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance.
    Katori S; Noguchi-Katori Y; Itohara S; Iwasato T
    J Neurosci; 2017 Aug; 37(32):7682-7699. PubMed ID: 28747385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increases in collateral axonal growth rostral to a thoracic hemisection in neonatal and weanling rat.
    Prendergast J; Stelzner DJ
    J Comp Neurol; 1976 Mar; 166(2):145-61. PubMed ID: 1262552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons.
    Soares S; Barnat M; Salim C; von Boxberg Y; Ravaille-Veron M; Nothias F
    Eur J Neurosci; 2007 Sep; 26(6):1446-61. PubMed ID: 17880387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord.
    Jayaprakash N; Wang Z; Hoeynck B; Krueger N; Kramer A; Balle E; Wheeler DS; Wheeler RA; Blackmore MG
    J Neurosci; 2016 May; 36(21):5877-90. PubMed ID: 27225775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting.
    Stavridis SI; Dehghani F; Korf HW; Hailer NP
    Spine (Phila Pa 1976); 2009 Nov; 34(23):2494-9. PubMed ID: 19927097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.