BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 31362726)

  • 1. Mechanistic interpretation of non-coding variants for discovering transcriptional regulators of drug response.
    Xie X; Hanson C; Sinha S
    BMC Biol; 2019 Jul; 17(1):62. PubMed ID: 31362726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation.
    Hanson C; Cairns J; Wang L; Sinha S
    Genome Res; 2018 Aug; 28(8):1207-1216. PubMed ID: 29898900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of breast cancer associated variants that modulate transcription factor binding.
    Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ
    PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TICA: Transcriptional Interaction and Coregulation Analyzer.
    Perna S; Pinoli P; Ceri S; Wong L
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):342-353. PubMed ID: 30578913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of models in predicting the effects of SNPs on TF-DNA binding using large-scale in vitro and in vivo data.
    Han D; Li Y; Wang L; Liang X; Miao Y; Li W; Wang S; Wang Z
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38517697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression.
    Reddy TE; Gertz J; Pauli F; Kucera KS; Varley KE; Newberry KM; Marinov GK; Mortazavi A; Williams BA; Song L; Crawford GE; Wold B; Willard HF; Myers RM
    Genome Res; 2012 May; 22(5):860-9. PubMed ID: 22300769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Prediction of Non-Coding Variant Impact in Human Retinal cis-Regulatory Elements.
    VandenBosch LS; Luu K; Timms AE; Challam S; Wu Y; Lee AY; Cherry TJ
    Transl Vis Sci Technol; 2022 Apr; 11(4):16. PubMed ID: 35435921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants.
    Wang M; Tai C; E W; Wei L
    Nucleic Acids Res; 2018 Jun; 46(11):e69. PubMed ID: 29617928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imputation for transcription factor binding predictions based on deep learning.
    Qin Q; Feng J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005403. PubMed ID: 28234893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional consequences of variation in transcription factor binding.
    Cusanovich DA; Pavlovic B; Pritchard JK; Gilad Y
    PLoS Genet; 2014 Mar; 10(3):e1004226. PubMed ID: 24603674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring.
    Zhang J; Liu J; Lee D; Lou S; Chen Z; Gürsoy G; Gerstein M
    BMC Bioinformatics; 2020 Jul; 21(1):281. PubMed ID: 32615918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RIP: the regulatory interaction predictor--a machine learning-based approach for predicting target genes of transcription factors.
    Bauer T; Eils R; König R
    Bioinformatics; 2011 Aug; 27(16):2239-47. PubMed ID: 21690103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational discovery of transcription factors associated with drug response.
    Hanson C; Cairns J; Wang L; Sinha S
    Pharmacogenomics J; 2016 Nov; 16(6):573-582. PubMed ID: 26503816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions.
    Ibarra IL; Hollmann NM; Klaus B; Augsten S; Velten B; Hennig J; Zaugg JB
    Nat Commun; 2020 Jan; 11(1):124. PubMed ID: 31913281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.