BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31363108)

  • 1. A bioinformatic analysis identifies circadian expression of splicing factors and time-dependent alternative splicing events in the HD-MY-Z cell line.
    Genov N; Basti A; Abreu M; Astaburuaga R; Relógio A
    Sci Rep; 2019 Jul; 9(1):11062. PubMed ID: 31363108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Splicing Switches in Elements of the TNF-Pathway Identified by Computational Analysis of Transcriptome Data for Human Cell Lines.
    Genov N; Basti A; Abreu M; Relógio A
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computational Analysis of Alternative Splicing across Mammalian Tissues Reveals Circadian and Ultradian Rhythms in Splicing Events.
    El-Athman R; Knezevic D; Fuhr L; Relógio A
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31443305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-talk between the circadian clock and the cell cycle in cancer.
    Soták M; Sumová A; Pácha J
    Ann Med; 2014 Jun; 46(4):221-32. PubMed ID: 24779962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes.
    Simpson CG; Fuller J; Calixto CP; McNicol J; Booth C; Brown JW; Staiger D
    Methods Mol Biol; 2016; 1398():119-32. PubMed ID: 26867620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Links between the Circadian Clock and the Cell Cycle.
    Farshadi E; van der Horst GTJ; Chaves I
    J Mol Biol; 2020 May; 432(12):3515-3524. PubMed ID: 32304699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of clock disrupted cancer cells reveals differential alternative splicing of cancer hallmarks genes.
    Malhan D; Basti A; Relógio A
    NPJ Syst Biol Appl; 2022 May; 8(1):17. PubMed ID: 35552415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systems-Level Analysis Reveals Circadian Regulation of Splicing in Colorectal Cancer.
    El-Athman R; Fuhr L; Relógio A
    EBioMedicine; 2018 Jul; 33():68-81. PubMed ID: 29936137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice.
    Preußner M; Wilhelmi I; Schultz AS; Finkernagel F; Michel M; Möröy T; Heyd F
    Mol Cell; 2014 May; 54(4):651-62. PubMed ID: 24837677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reciprocal interplay between TNFα and the circadian clock impacts on cell proliferation and migration in Hodgkin lymphoma cells.
    Abreu M; Basti A; Genov N; Mazzoccoli G; Relógio A
    Sci Rep; 2018 Jul; 8(1):11474. PubMed ID: 30065253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-controlled Rhythmic Gene Expression in Endothermic Mammals: All Diurnal Rhythms are Equal, but Some are Circadian.
    Preußner M; Heyd F
    Bioessays; 2018 Jul; 40(7):e1700216. PubMed ID: 29869389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardinal Epigenetic Role of non-coding Regulatory RNAs in Circadian Rhythm.
    Bhadra U; Patra P; Pal-Bhadra M
    Mol Neurobiol; 2018 Apr; 55(4):3564-3576. PubMed ID: 28516429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle.
    Gaucher J; Montellier E; Sassone-Corsi P
    Trends Cell Biol; 2018 May; 28(5):368-379. PubMed ID: 29471986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula.
    Shen Y; Wu X; Liu D; Song S; Liu D; Wang H
    Biochem Biophys Res Commun; 2016 May; 474(2):271-276. PubMed ID: 27086112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmic Behavior Is Controlled by the SRm160 Splicing Factor in
    Beckwith EJ; Hernando CE; Polcowñuk S; Bertolin AP; Mancini E; Ceriani MF; Yanovsky MJ
    Genetics; 2017 Oct; 207(2):593-607. PubMed ID: 28801530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian Genes as Therapeutic Targets in Pancreatic Cancer.
    García-Costela M; Escudero-Feliú J; Puentes-Pardo JD; San Juán SM; Morales-Santana S; Ríos-Arrabal S; Carazo Á; León J
    Front Endocrinol (Lausanne); 2020; 11():638. PubMed ID: 33042011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis.
    Cui Z; Xu Q; Wang X
    J Exp Bot; 2014 May; 65(8):1973-80. PubMed ID: 24604736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the
    Ma H; Zhang L; Yu X; Wan Y; Wang D; Shi W; Huang M; Xu M; Shen E; Gao M; Guo J
    G3 (Bethesda); 2019 Nov; 9(11):3653-3661. PubMed ID: 31511298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-Frameshift Protein UPF1 Regulates
    Wu Y; Zhang Y; Sun Y; Yu J; Wang P; Ma H; Chen S; Ma L; Zhang D; He Q; Guo J
    Genetics; 2017 Aug; 206(4):1881-1893. PubMed ID: 28600326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors.
    Carazo F; Romero JP; Rubio A
    Brief Bioinform; 2019 Jul; 20(4):1358-1375. PubMed ID: 29390045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.