BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31363824)

  • 1. Biostimulation of calcite precipitation process by bacterial community in improving cement stabilized rammed earth as sustainable material.
    Fang C; Achal V
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7719-7727. PubMed ID: 31363824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.
    Li M; Zhu X; Mukherjee A; Huang M; Achal V
    J Hazard Mater; 2017 May; 329():178-184. PubMed ID: 28135655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.
    Jeong JH; Jo YS; Park CS; Kang CH; So JS
    J Microbiol Biotechnol; 2017 Jul; 27(7):1331-1335. PubMed ID: 28478659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcite-forming bacteria for compressive strength improvement in mortar.
    Park SJ; Park YM; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Soil Mineral Composition on the Compressive Strength of Cement Stabilized Rammed Earth.
    Narloch P; Woyciechowski P; Kotowski J; Gawriuczenkow I; Wójcik E
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing the Composition of Cement-Stabilized Rammed Earth with the Association Analysis Application.
    Rogala W; Anysz H; Narloch P
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks.
    Anysz H; Narloch P
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
    Alonso MJC; Ortiz CEL; Perez SOG; Narayanasamy R; Fajardo San Miguel GDJ; Hernández HH; Balagurusamy N
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21451-21458. PubMed ID: 28593545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of native ureolytic microbial community on biocementation potential of Sporosarcina pasteurii.
    Murugan R; Suraishkumar GK; Mukherjee A; Dhami NK
    Sci Rep; 2021 Oct; 11(1):20856. PubMed ID: 34675302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools.
    Anysz H; Brzozowski Ł; Kretowicz W; Narloch P
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.
    Kim HJ; Eom HJ; Park C; Jung J; Shin B; Kim W; Chung N; Choi IG; Park W
    J Microbiol Biotechnol; 2016 Mar; 26(3):540-8. PubMed ID: 26699752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.
    Wei S; Cui H; Jiang Z; Liu H; He H; Fang N
    Braz J Microbiol; 2015 Jun; 46(2):455-64. PubMed ID: 26273260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biostimulation of carbonate precipitation process in soil for copper immobilization.
    Chen X; Achal V
    J Hazard Mater; 2019 Apr; 368():705-713. PubMed ID: 30739023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste.
    Lee JC; Lee CJ; Chun WY; Kim WJ; Chung CW
    J Microbiol Biotechnol; 2015 Aug; 25(8):1328-38. PubMed ID: 25876598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native Bacterial Community Convergence in Augmented and Stimulated Ureolytic MICP Biocementation.
    Graddy CMR; Gomez MG; DeJong JT; Nelson DC
    Environ Sci Technol; 2021 Aug; 55(15):10784-10793. PubMed ID: 34279077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of simulated acid rain on the stability of calcium carbonate immobilized by microbial carbonate precipitation.
    Chen X; Achal V
    J Environ Manage; 2020 Jun; 264():110419. PubMed ID: 32250884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.
    Wang J; Ersan YC; Boon N; De Belie N
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2993-3007. PubMed ID: 26896159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings.
    Montaño-Salazar SM; Lizarazo-Marriaga J; Brandão PFB
    Curr Microbiol; 2018 Mar; 75(3):256-265. PubMed ID: 29043388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.
    Dhami NK; Reddy MS; Mukherjee A
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2397-406. PubMed ID: 23793943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of microstructure of cementitious composites by microbially-induced calcite precipitation.
    Isar A; Sürmelioğlu S; Andiç-Çakir Ö; Hameş EE
    World J Microbiol Biotechnol; 2023 Jan; 39(3):76. PubMed ID: 36637547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.